5 results on '"Hajnal, B."'
Search Results
2. Intracortical mechanisms of single pulse electrical stimulation (SPES) evoked excitations and inhibitions in humans.
- Author
-
Hajnal B, Szabó JP, Tóth E, Keller CJ, Wittner L, Mehta AD, Erőss L, Ulbert I, Fabó D, and Entz L
- Subjects
- Humans, Male, Female, Adult, Cerebral Cortex physiology, Cerebral Cortex physiopathology, Drug Resistant Epilepsy therapy, Drug Resistant Epilepsy physiopathology, Electroencephalography, Young Adult, Middle Aged, Epilepsy physiopathology, Epilepsy therapy, Electric Stimulation methods, Evoked Potentials
- Abstract
Cortico-cortical evoked potentials (CCEPs) elicited by single-pulse electric stimulation (SPES) are widely used to assess effective connectivity between cortical areas and are also implemented in the presurgical evaluation of epileptic patients. Nevertheless, the cortical generators underlying the various components of CCEPs in humans have not yet been elucidated. Our aim was to describe the laminar pattern arising under SPES evoked CCEP components (P1, N1, P2, N2, P3) and to evaluate the similarities between N2 and the downstate of sleep slow waves. We used intra-cortical laminar microelectrodes (LMEs) to record CCEPs evoked by 10 mA bipolar 0.5 Hz electric pulses in seven patients with medically intractable epilepsy implanted with subdural grids. Based on the laminar profile of CCEPs, the latency of components is not layer-dependent, however their rate of appearance varies across cortical depth and stimulation distance, while the seizure onset zone does not seem to affect the emergence of components. Early neural excitation primarily engages middle and deep layers, propagating to the superficial layers, followed by mainly superficial inhibition, concluding in a sleep slow wave-like inhibition and excitation sequence., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. The role of superficial and deep layers in the generation of high frequency oscillations and interictal epileptiform discharges in the human cortex.
- Author
-
Fabo D, Bokodi V, Szabó JP, Tóth E, Salami P, Keller CJ, Hajnal B, Thesen T, Devinsky O, Doyle W, Mehta A, Madsen J, Eskandar E, Erőss L, Ulbert I, Halgren E, and Cash SS
- Subjects
- Humans, Animals, Body Fluids, Coleoptera, Endocrine Glands, Epilepsies, Partial, High-Frequency Ventilation
- Abstract
Describing intracortical laminar organization of interictal epileptiform discharges (IED) and high frequency oscillations (HFOs), also known as ripples. Defining the frequency limits of slow and fast ripples. We recorded potential gradients with laminar multielectrode arrays (LME) for current source density (CSD) and multi-unit activity (MUA) analysis of interictal epileptiform discharges IEDs and HFOs in the neocortex and mesial temporal lobe of focal epilepsy patients. IEDs were observed in 20/29, while ripples only in 9/29 patients. Ripples were all detected within the seizure onset zone (SOZ). Compared to hippocampal HFOs, neocortical ripples proved to be longer, lower in frequency and amplitude, and presented non-uniform cycles. A subset of ripples (≈ 50%) co-occurred with IEDs, while IEDs were shown to contain variable high-frequency activity, even below HFO detection threshold. The limit between slow and fast ripples was defined at 150 Hz, while IEDs' high frequency components form clusters separated at 185 Hz. CSD analysis of IEDs and ripples revealed an alternating sink-source pair in the supragranular cortical layers, although fast ripple CSD appeared lower and engaged a wider cortical domain than slow ripples MUA analysis suggested a possible role of infragranularly located neural populations in ripple and IED generation. Laminar distribution of peak frequencies derived from HFOs and IEDs, respectively, showed that supragranular layers were dominated by slower (< 150 Hz) components. Our findings suggest that cortical slow ripples are generated primarily in upper layers while fast ripples and associated MUA in deeper layers. The dissociation of macro- and microdomains suggests that microelectrode recordings may be more selective for SOZ-linked ripples. We found a complex interplay between neural activity in the neocortical laminae during ripple and IED formation. We observed a potential leading role of cortical neurons in deeper layers, suggesting a refined utilization of LMEs in SOZ localization., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
4. New method to apply the lumbar lordosis of standing radiographs to supine CT-based virtual 3D lumbar spine models.
- Author
-
Hajnal B, Eltes PE, Bereczki F, Turbucz M, Fayad J, Pokorni AJ, and Lazary A
- Subjects
- Humans, Lumbar Vertebrae diagnostic imaging, Standing Position, Reproducibility of Results, Tomography, X-Ray Computed methods, Lordosis diagnostic imaging
- Abstract
Standing radiographs play an important role in the characterization of spinal sagittal alignment, as they depict the spine under physiologic loading conditions. However, there is no commonly available method to apply the lumbar lordosis of standing radiographs to supine CT-based virtual 3D models of the lumbar spine. We aimed to develop a method for the sagittal rigid-body registration of vertebrae to standing radiographs, using the exact geometry reconstructed from CT-data. In a cohort of 50 patients with monosegmental spinal degeneration, segmentation and registration of the lumbar vertebrae and sacrum were performed by two independent investigators. Intersegmental angles and lumbar lordosis were measured both in CT scans and radiographs. Vertebrae were registered using the X-ray module of Materialise Mimics software. Postregistrational midsagittal sections were constructed of the sagittal midplane sections of the registered 3D lumbar spine geometries. Mean Hausdorff distance was measured between corresponding registered vertebral geometries. The registration process minimized the difference between the X-rays' and postregistrational midsagittal sections' lordoses. Intra- and inter-rater reliability was excellent based on angle and mean Hausdorff distance measurements. We propose an accessible, accurate, and reproducible method for creating patient-specific 3D geometries of the lumbar spine that accurately represent spinal sagittal alignment in the standing position., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
5. Bursting of excitatory cells is linked to interictal epileptic discharge generation in humans.
- Author
-
Hofer KT, Kandrács Á, Tóth K, Hajnal B, Bokodi V, Tóth EZ, Erőss L, Entz L, Bagó AG, Fabó D, Ulbert I, and Wittner L
- Subjects
- Action Potentials physiology, Animals, Humans, Interneurons pathology, Neurons physiology, Pyramidal Cells physiology, Epilepsy pathology
- Abstract
Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes-the hypersynchronous events between seizures-is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.