1. Machine learning analysis of whole mouse brain vasculature
- Author
-
Giles Tetteh, Marco Düring, Velizar Efremov, Marie Piraud, Johannes C. Paetzold, Martin Dichgans, Mihail Ivilinov Todorov, Suprosanna Shit, Bjoern H. Menze, Oliver Schoppe, Katalin Todorov-Völgyi, and Ali Ertürk
- Subjects
Brain vasculature ,Computer science ,Vessel segmentation ,Biochemistry ,Convolutional neural network ,Article ,blood supply [Brain] ,Machine Learning ,03 medical and health sciences ,Mice ,Imaging, Three-Dimensional ,medicine ,Animals ,Segmentation ,ddc:610 ,Molecular Biology ,030304 developmental biology ,0303 health sciences ,business.industry ,Cerebrum ,Deep learning ,Brain atlas ,Brain ,Cell Biology ,medicine.anatomical_structure ,Artificial intelligence ,Brainstem ,business ,Neuroscience ,Biotechnology - Abstract
Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular function of the brain.
- Published
- 2020
- Full Text
- View/download PDF