3 results on '"Weisburd B"'
Search Results
2. A CCG expansion in ABCD3 causes oculopharyngodistal myopathy in individuals of European ancestry.
- Author
-
Cortese A, Beecroft SJ, Facchini S, Curro R, Cabrera-Serrano M, Stevanovski I, Chintalaphani SR, Gamaarachchi H, Weisburd B, Folland C, Monahan G, Scriba CK, Dofash L, Johari M, Grosz BR, Ellis M, Fearnley LG, Tankard R, Read J, Merve A, Dominik N, Vegezzi E, Schnekenberg RP, Fernandez-Eulate G, Masingue M, Giovannini D, Delatycki MB, Storey E, Gardner M, Amor DJ, Nicholson G, Vucic S, Henderson RD, Robertson T, Dyke J, Fabian V, Mastaglia F, Davis MR, Kennerson M, Quinlivan R, Hammans S, Tucci A, Bahlo M, McLean CA, Laing NG, Stojkovic T, Houlden H, Hanna MG, Deveson IW, Lockhart PJ, Lamont PJ, Fahey MC, Bugiardini E, and Ravenscroft G
- Subjects
- Humans, Male, Female, Adult, Middle Aged, ATP-Binding Cassette Transporters genetics, Myopathies, Structural, Congenital genetics, Myopathies, Structural, Congenital pathology, Pedigree, Aged, Young Adult, Fibroblasts metabolism, Fibroblasts pathology, Muscle Weakness genetics, Muscle Weakness pathology, Adolescent, Muscular Dystrophies, Trinucleotide Repeat Expansion genetics, White People genetics, Muscle, Skeletal pathology
- Abstract
Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. Determinants of penetrance and variable expressivity in monogenic metabolic conditions across 77,184 exomes.
- Author
-
Goodrich JK, Singer-Berk M, Son R, Sveden A, Wood J, England E, Cole JB, Weisburd B, Watts N, Caulkins L, Dornbos P, Koesterer R, Zappala Z, Zhang H, Maloney KA, Dahl A, Aguilar-Salinas CA, Atzmon G, Barajas-Olmos F, Barzilai N, Blangero J, Boerwinkle E, Bonnycastle LL, Bottinger E, Bowden DW, Centeno-Cruz F, Chambers JC, Chami N, Chan E, Chan J, Cheng CY, Cho YS, Contreras-Cubas C, Córdova E, Correa A, DeFronzo RA, Duggirala R, Dupuis J, Garay-Sevilla ME, García-Ortiz H, Gieger C, Glaser B, González-Villalpando C, Gonzalez ME, Grarup N, Groop L, Gross M, Haiman C, Han S, Hanis CL, Hansen T, Heard-Costa NL, Henderson BE, Hernandez JMM, Hwang MY, Islas-Andrade S, Jørgensen ME, Kang HM, Kim BJ, Kim YJ, Koistinen HA, Kooner JS, Kuusisto J, Kwak SH, Laakso M, Lange L, Lee JY, Lee J, Lehman DM, Linneberg A, Liu J, Loos RJF, Lyssenko V, Ma RCW, Martínez-Hernández A, Meigs JB, Meitinger T, Mendoza-Caamal E, Mohlke KL, Morris AD, Morrison AC, Ng MCY, Nilsson PM, O'Donnell CJ, Orozco L, Palmer CNA, Park KS, Post WS, Pedersen O, Preuss M, Psaty BM, Reiner AP, Revilla-Monsalve C, Rich SS, Rotter JI, Saleheen D, Schurmann C, Sim X, Sladek R, Small KS, So WY, Spector TD, Strauch K, Strom TM, Tai ES, Tam CHT, Teo YY, Thameem F, Tomlinson B, Tracy RP, Tuomi T, Tuomilehto J, Tusié-Luna T, van Dam RM, Vasan RS, Wilson JG, Witte DR, Wong TY, Burtt NP, Zaitlen N, McCarthy MI, Boehnke M, Pollin TI, Flannick J, Mercader JM, O'Donnell-Luria A, Baxter S, Florez JC, MacArthur DG, and Udler MS
- Subjects
- Adult, Biological Variation, Population, Biomarkers metabolism, Diabetes Mellitus, Type 2 metabolism, Dyslipidemias metabolism, Exome genetics, Genotype, Humans, Multifactorial Inheritance, Penetrance, Risk Assessment, Diabetes Mellitus, Type 2 genetics, Dyslipidemias genetics, Genetic Predisposition to Disease genetics
- Abstract
Hundreds of thousands of genetic variants have been reported to cause severe monogenic diseases, but the probability that a variant carrier develops the disease (termed penetrance) is unknown for virtually all of them. Additionally, the clinical utility of common polygenetic variation remains uncertain. Using exome sequencing from 77,184 adult individuals (38,618 multi-ancestral individuals from a type 2 diabetes case-control study and 38,566 participants from the UK Biobank, for whom genotype array data were also available), we apply clinical standard-of-care gene variant curation for eight monogenic metabolic conditions. Rare variants causing monogenic diabetes and dyslipidemias display effect sizes significantly larger than the top 1% of the corresponding polygenic scores. Nevertheless, penetrance estimates for monogenic variant carriers average 60% or lower for most conditions. We assess epidemiologic and genetic factors contributing to risk prediction in monogenic variant carriers, demonstrating that inclusion of polygenic variation significantly improves biomarker estimation for two monogenic dyslipidemias.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.