5 results on '"Stevanovski I"'
Search Results
2. A CCG expansion in ABCD3 causes oculopharyngodistal myopathy in individuals of European ancestry.
- Author
-
Cortese A, Beecroft SJ, Facchini S, Curro R, Cabrera-Serrano M, Stevanovski I, Chintalaphani SR, Gamaarachchi H, Weisburd B, Folland C, Monahan G, Scriba CK, Dofash L, Johari M, Grosz BR, Ellis M, Fearnley LG, Tankard R, Read J, Merve A, Dominik N, Vegezzi E, Schnekenberg RP, Fernandez-Eulate G, Masingue M, Giovannini D, Delatycki MB, Storey E, Gardner M, Amor DJ, Nicholson G, Vucic S, Henderson RD, Robertson T, Dyke J, Fabian V, Mastaglia F, Davis MR, Kennerson M, Quinlivan R, Hammans S, Tucci A, Bahlo M, McLean CA, Laing NG, Stojkovic T, Houlden H, Hanna MG, Deveson IW, Lockhart PJ, Lamont PJ, Fahey MC, Bugiardini E, and Ravenscroft G
- Subjects
- Humans, Male, Female, Adult, Middle Aged, ATP-Binding Cassette Transporters genetics, Myopathies, Structural, Congenital genetics, Myopathies, Structural, Congenital pathology, Pedigree, Aged, Young Adult, Fibroblasts metabolism, Fibroblasts pathology, Muscle Weakness genetics, Muscle Weakness pathology, Adolescent, Muscular Dystrophies, Trinucleotide Repeat Expansion genetics, White People genetics, Muscle, Skeletal pathology
- Abstract
Oculopharyngodistal myopathy (OPDM) is an inherited myopathy manifesting with ptosis, dysphagia and distal weakness. Pathologically it is characterised by rimmed vacuoles and intranuclear inclusions on muscle biopsy. In recent years CGG • CCG repeat expansion in four different genes were identified in OPDM individuals in Asian populations. None of these have been found in affected individuals of non-Asian ancestry. In this study we describe the identification of CCG expansions in ABCD3, ranging from 118 to 694 repeats, in 35 affected individuals across eight unrelated OPDM families of European ancestry. ABCD3 transcript appears upregulated in fibroblasts and skeletal muscle from OPDM individuals, suggesting a potential role of over-expression of CCG repeat containing ABCD3 transcript in progressive skeletal muscle degeneration. The study provides further evidence of the role of non-coding repeat expansions in unsolved neuromuscular diseases and strengthens the association between the CGG • CCG repeat motif and a specific pattern of muscle weakness., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
3. A universal molecular control for DNA, mRNA and protein expression.
- Author
-
Gunter HM, Youlten SE, Reis ALM, McCubbin T, Madala BS, Wong T, Stevanovski I, Cipponi A, Deveson IW, Santini NS, Kummerfeld S, Croucher PI, Marcellin E, and Mercer TR
- Subjects
- RNA, Messenger genetics, RNA, Messenger metabolism, Genomics, RNA, Proteomics, DNA genetics
- Abstract
The expression of genes encompasses their transcription into mRNA followed by translation into protein. In recent years, next-generation sequencing and mass spectrometry methods have profiled DNA, RNA and protein abundance in cells. However, there are currently no reference standards that are compatible across these genomic, transcriptomic and proteomic methods, and provide an integrated measure of gene expression. Here, we use synthetic biology principles to engineer a multi-omics control, termed pREF, that can act as a universal molecular standard for next-generation sequencing and mass spectrometry methods. The pREF sequence encodes 21 synthetic genes that can be in vitro transcribed into spike-in mRNA controls, and in vitro translated to generate matched protein controls. The synthetic genes provide qualitative controls that can measure sensitivity and quantitative accuracy of DNA, RNA and peptide detection. We demonstrate the use of pREF in metagenome DNA sequencing and RNA sequencing experiments and evaluate the quantification of proteins using mass spectrometry. Unlike previous spike-in controls, pREF can be independently propagated and the synthetic mRNA and protein controls can be sustainably prepared by recipient laboratories using common molecular biology techniques. Together, this provides a universal synthetic standard able to integrate genomic, transcriptomic and proteomic methods., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
4. Library adaptors with integrated reference controls improve the accuracy and reliability of nanopore sequencing.
- Author
-
Gunter HM, Youlten SE, Madala BS, Reis ALM, Stevanovski I, Wong T, Kummerfield SK, Deveson IW, Santini NS, Marcellin E, and Mercer TR
- Subjects
- Reproducibility of Results, Gene Library, High-Throughput Nucleotide Sequencing methods, RNA, Nanopore Sequencing
- Abstract
Library adaptors are short oligonucleotides that are attached to RNA and DNA samples in preparation for next-generation sequencing (NGS). Adaptors can also include additional functional elements, such as sample indexes and unique molecular identifiers, to improve library analysis. Here, we describe Control Library Adaptors, termed CAPTORs, that measure the accuracy and reliability of NGS. CAPTORs can be integrated within the library preparation of RNA and DNA samples, and their encoded information is retrieved during sequencing. We show how CAPTORs can measure the accuracy of nanopore sequencing, evaluate the quantitative performance of metagenomic and RNA sequencing, and improve normalisation between samples. CAPTORs can also be customised for clinical diagnoses, correcting systematic sequencing errors and improving the diagnosis of pathogenic BRCA1/2 variants in breast cancer. CAPTORs are a simple and effective method to increase the accuracy and reliability of NGS, enabling comparisons between samples, reagents and laboratories, and supporting the use of nanopore sequencing for clinical diagnosis., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
5. Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis.
- Author
-
Bull RA, Adikari TN, Ferguson JM, Hammond JM, Stevanovski I, Beukers AG, Naing Z, Yeang M, Verich A, Gamaarachchi H, Kim KW, Luciani F, Stelzer-Braid S, Eden JS, Rawlinson WD, van Hal SJ, and Deveson IW
- Subjects
- COVID-19 diagnosis, COVID-19 virology, Genome, Viral, Humans, RNA, Viral, Sensitivity and Specificity, Nanopore Sequencing methods, SARS-CoV-2 genetics, SARS-CoV-2 isolation & purification, Whole Genome Sequencing methods
- Abstract
Viral whole-genome sequencing (WGS) provides critical insight into the transmission and evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Long-read sequencing devices from Oxford Nanopore Technologies (ONT) promise significant improvements in turnaround time, portability and cost, compared to established short-read sequencing platforms for viral WGS (e.g., Illumina). However, adoption of ONT sequencing for SARS-CoV-2 surveillance has been limited due to common concerns around sequencing accuracy. To address this, here we perform viral WGS with ONT and Illumina platforms on 157 matched SARS-CoV-2-positive patient specimens and synthetic RNA controls, enabling rigorous evaluation of analytical performance. We report that, despite the elevated error rates observed in ONT sequencing reads, highly accurate consensus-level sequence determination was achieved, with single nucleotide variants (SNVs) detected at >99% sensitivity and >99% precision above a minimum ~60-fold coverage depth, thereby ensuring suitability for SARS-CoV-2 genome analysis. ONT sequencing also identified a surprising diversity of structural variation within SARS-CoV-2 specimens that were supported by evidence from short-read sequencing on matched samples. However, ONT sequencing failed to accurately detect short indels and variants at low read-count frequencies. This systematic evaluation of analytical performance for SARS-CoV-2 WGS will facilitate widespread adoption of ONT sequencing within local, national and international COVID-19 public health initiatives.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.