1. Targeting LINC00152 activates cAMP/Ca 2+ /ferroptosis axis and overcomes tamoxifen resistance in ER+ breast cancer.
- Author
-
Saatci O, Alam R, Huynh-Dam KT, Isik A, Uner M, Belder N, Ersan PG, Tokat UM, Ulukan B, Cetin M, Calisir K, Gedik ME, Bal H, Sener Sahin O, Riazalhosseini Y, Thieffry D, Gautheret D, Ogretmen B, Aksoy S, Uner A, Akyol A, and Sahin O
- Subjects
- Humans, Female, Cell Line, Tumor, Animals, Receptors, Estrogen metabolism, Mice, Reactive Oxygen Species metabolism, MCF-7 Cells, Tamoxifen pharmacology, Tamoxifen therapeutic use, Breast Neoplasms drug therapy, Breast Neoplasms genetics, Breast Neoplasms metabolism, Breast Neoplasms pathology, Ferroptosis drug effects, Ferroptosis genetics, RNA, Long Noncoding metabolism, RNA, Long Noncoding genetics, Cyclic AMP metabolism, Calcium metabolism, Drug Resistance, Neoplasm drug effects, Drug Resistance, Neoplasm genetics
- Abstract
Tamoxifen has been the mainstay therapy to treat early, locally advanced, and metastatic estrogen receptor-positive (ER + ) breast cancer, constituting around 75% of all cases. However, the emergence of resistance is common, necessitating the identification of novel therapeutic targets. Here, we demonstrated that long-noncoding RNA LINC00152 confers tamoxifen resistance by blocking tamoxifen-induced ferroptosis, an iron-mediated cell death. Mechanistically, inhibiting LINC00152 reduces the mRNA stability of phosphodiesterase 4D (PDE4D), leading to activation of the cAMP/PKA/CREB axis and increased expression of the TRPC1 Ca
2+ channel. This causes cytosolic Ca2+ overload and generation of reactive oxygen species (ROS) that is, on the one hand, accompanied by downregulation of FTH1, a member of the iron sequestration unit, thus increasing intracellular Fe2+ levels; and on the other hand, inhibition of the peroxidase activity upon reduced GPX4 and xCT levels, in part by cAMP/CREB. These ultimately restore tamoxifen-dependent lipid peroxidation and ferroptotic cell death which are reversed upon chelating Ca2+ or overexpressing GPX4 or xCT. Overexpressing PDE4D reverses LINC00152 inhibition-mediated tamoxifen sensitization by de-activating the cAMP/Ca2+ /ferroptosis axis. Importantly, high LINC00152 expression is significantly correlated with high PDE4D/low ferroptosis and worse survival in multiple cohorts of tamoxifen- or tamoxifen-containing endocrine therapy-treated ER+ breast cancer patients. Overall, we identified LINC00152 inhibition as a novel mechanism of tamoxifen sensitization via restoring tamoxifen-dependent ferroptosis upon destabilizing PDE4D, increasing cAMP and Ca2+ levels, thus leading to ROS generation and lipid peroxidation. Our findings reveal LINC00152 and its effectors as actionable therapeutic targets to improve clinical outcome in refractory ER+ breast cancer., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF