1. Nested order-disorder framework containing a crystalline matrix with self-filled amorphous-like innards.
- Author
-
Bu K, Hu Q, Qi X, Wang D, Guo S, Luo H, Lin T, Guo X, Zeng Q, Ding Y, Huang F, Yang W, Mao HK, and Lü X
- Abstract
Solids can be generally categorized by their structures into crystalline and amorphous states with different interactions among atoms dictating their properties. Crystalline-amorphous hybrid structures, combining the advantages of both ordered and disordered components, present a promising opportunity to design materials with emergent collective properties. Hybridization of crystalline and amorphous structures at the sublattice level with long-range periodicity has been rarely observed. Here, we report a nested order-disorder framework (NOF) constructed by a crystalline matrix with self-filled amorphous-like innards that is obtained by using pressure to regulate the bonding hierarchy of Cu
12 Sb4 S13 . Combined in situ experimental and computational methods demonstrate the formation of disordered Cu sublattice which is embedded in the retained crystalline Cu framework. Such a NOF structure gives a low thermal conductivity (~0.24 W·m-1 ·K-1 ) and a metallic electrical conductivity (8 × 10-6 Ω·m), realizing the collaborative improvement of two competing physical properties. These findings demonstrate a category of solid-state materials to link the crystalline and amorphous forms in the sublattice-scale, which will exhibit extraordinary properties., (© 2022. The Author(s).)- Published
- 2022
- Full Text
- View/download PDF