1. Chiral 3D structures through multi-dimensional transfer printing of multilayer quantum dot patterns.
- Author
-
Kim GY, Kim S, Park KH, Jang H, Kim M, Nam TW, Song KM, Shin H, Park Y, Cho Y, Yeom J, Choi MJ, Jang MS, and Jung YS
- Abstract
Three-dimensional optical nanostructures have garnered significant interest in photonics due to their extraordinary capabilities to manipulate the amplitude, phase, and polarization states of light. However, achieving complex three-dimensional optical nanostructures with bottom-up fabrication has remained challenging, despite its nanoscale precision and cost-effectiveness, mainly due to inherent limitations in structural controllability. Here, we report the optical characteristics of intricate two- and three-dimensional nanoarchitectures made of colloidal quantum dots fabricated with multi-dimensional transfer printing. Our customizable fabrication platform, directed by tailored interface polarity, enables flexible geometric control over a variety of one-, two-, and three-dimensional quantum dot architectures, achieving tunable and advanced optical features. For example, we demonstrate a two-dimensional quantum dot nanomesh with tuned subwavelength square perforations designed by finite-difference time-domain calculations, achieving an 8-fold enhanced photoluminescence due to the maximized optical resonance. Furthermore, a three-dimensional quantum dot chiral structure is also created via asymmetric stacking of one-dimensional quantum dot layers, realizing a pronounced circular dichroism intensity exceeding 20°., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF