1. Slow magnetic relaxation in a europium(II) complex.
- Author
-
Errulat D, Harriman KLM, Gálico DA, Salerno EV, van Tol J, Mansikkamäki A, Rouzières M, Hill S, Clérac R, and Murugesu M
- Abstract
Single-ion anisotropy is vital for the observation of Single-Molecule Magnet (SMM) properties (i.e., a slow dynamics of the magnetization) in lanthanide-based systems. In the case of europium, the occurrence of this phenomenon has been inhibited by the spin and orbital quantum numbers that give way to J = 0 in the trivalent state and the half-filled population of the 4f orbitals in the divalent state. Herein, by optimizing the local crystal field of a quasi-linear bis(silylamido) Eu
II complex, the [EuII (N{SiMePh2 }2 )2 ] SMM is described, providing an example of a europium complex exhibiting slow relaxation of its magnetization. This behavior is dominated by a thermally activated (Orbach-like) mechanism, with an effective energy barrier of approximately 8 K, determined by bulk magnetometry and electron paramagnetic resonance. Ab initio calculations confirm second-order spin-orbit coupling effects lead to non-negligible axial magnetic anisotropy, splitting the ground state multiplet into four Kramers doublets, thereby allowing for the observation of an Orbach-like relaxation at low temperatures., (© 2024. The Author(s).)- Published
- 2024
- Full Text
- View/download PDF