1. Light-matter coupling in large-area van der Waals superlattices.
- Author
-
Kumar P, Lynch J, Song B, Ling H, Barrera F, Kisslinger K, Zhang H, Anantharaman SB, Digani J, Zhu H, Choudhury TH, McAleese C, Wang X, Conran BR, Whear O, Motala MJ, Snure M, Muratore C, Redwing JM, Glavin NR, Stach EA, Davoyan AR, and Jariwala D
- Abstract
Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers., (© 2021. The Author(s), under exclusive licence to Springer Nature Limited.)
- Published
- 2022
- Full Text
- View/download PDF