1. Efficacy of novel agents against cellular models of familial platelet disorder with myeloid malignancy (FPD-MM).
- Author
-
Mill CP, Fiskus WC, DiNardo CD, Reville P, Davis JA, Birdwell CE, Das K, Hou H, Takahashi K, Flores L, Ruan X, Su X, Loghavi S, Khoury JD, and Bhalla KN
- Subjects
- Humans, Animals, Mice, Core Binding Factor Alpha 2 Subunit genetics, Homoharringtonine, Blood Platelets pathology, Proto-Oncogene Proteins c-bcl-2, Leukemia, Myeloid, Acute drug therapy, Leukemia, Myeloid, Acute genetics, Leukemia, Myeloid, Acute metabolism, Blood Platelet Disorders complications, Blood Platelet Disorders genetics, Blood Platelet Disorders pathology
- Abstract
Germline, mono-allelic mutations in RUNX1 cause familial platelet disorder (RUNX1-FPD) that evolves into myeloid malignancy (FPD-MM): MDS or AML. FPD-MM commonly harbors co-mutations in the second RUNX1 allele and/or other epigenetic regulators. Here we utilized patient-derived (PD) FPD-MM cells and established the first FPD-MM AML cell line (GMR-AML1). GMR-AML1 cells exhibited active super-enhancers of MYB, MYC, BCL2 and CDK6, augmented expressions of c-Myc, c-Myb, EVI1 and PLK1 and surface markers of AML stem cells. In longitudinally studied bone marrow cells from a patient at FPD-MM vs RUNX1-FPD state, we confirmed increased chromatin accessibility and mRNA expressions of MYB, MECOM and BCL2 in FPD-MM cells. GMR-AML1 and PD FPD-MM cells were sensitive to homoharringtonine (HHT or omacetaxine) or mebendazole-induced lethality, associated with repression of c-Myc, EVI1, PLK1, CDK6 and MCL1. Co-treatment with MB and the PLK1 inhibitor volasertib exerted synergistic in vitro lethality in GMR-AML1 cells. In luciferase-expressing GMR-AML1 xenograft model, MB, omacetaxine or volasertib monotherapy, or co-treatment with MB and volasertib, significantly reduced AML burden and improved survival in the immune-depleted mice. These findings highlight the molecular features of FPD-MM progression and demonstrate HHT, MB and/or volasertib as effective agents against cellular models of FPD-MM., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF