1. Heterozygous missense mutations in SMARCA2 cause Nicolaides-Baraitser syndrome.
- Author
-
Van Houdt JK, Nowakowska BA, Sousa SB, van Schaik BD, Seuntjens E, Avonce N, Sifrim A, Abdul-Rahman OA, van den Boogaard MJ, Bottani A, Castori M, Cormier-Daire V, Deardorff MA, Filges I, Fryer A, Fryns JP, Gana S, Garavelli L, Gillessen-Kaesbach G, Hall BD, Horn D, Huylebroeck D, Klapecki J, Krajewska-Walasek M, Kuechler A, Lines MA, Maas S, Macdermot KD, McKee S, Magee A, de Man SA, Moreau Y, Morice-Picard F, Obersztyn E, Pilch J, Rosser E, Shannon N, Stolte-Dijkstra I, Van Dijck P, Vilain C, Vogels A, Wakeling E, Wieczorek D, Wilson L, Zuffardi O, van Kampen AH, Devriendt K, Hennekam R, and Vermeesch JR
- Subjects
- Adolescent, Adult, Amino Acid Sequence, Base Sequence, Child, Child, Preschool, Chromatin Assembly and Disassembly, Chromosomal Proteins, Non-Histone metabolism, Facies, Genes, Regulator, Humans, Infant, Male, Molecular Sequence Data, Mutation, Missense, Sequence Alignment, Sequence Analysis, DNA, Transcription Factors chemistry, Transcription Factors metabolism, Transcription, Genetic, Young Adult, Chromosomal Proteins, Non-Histone genetics, Foot Deformities, Congenital genetics, Hypotrichosis genetics, Intellectual Disability genetics, Transcription Factors genetics
- Abstract
Nicolaides-Baraitser syndrome (NBS) is characterized by sparse hair, distinctive facial morphology, distal-limb anomalies and intellectual disability. We sequenced the exomes of ten individuals with NBS and identified heterozygous variants in SMARCA2 in eight of them. Extended molecular screening identified nonsynonymous SMARCA2 mutations in 36 of 44 individuals with NBS; these mutations were confirmed to be de novo when parental samples were available. SMARCA2 encodes the core catalytic unit of the SWI/SNF ATP-dependent chromatin remodeling complex that is involved in the regulation of gene transcription. The mutations cluster within sequences that encode ultra-conserved motifs in the catalytic ATPase region of the protein. These alterations likely do not impair SWI/SNF complex assembly but may be associated with disrupted ATPase activity. The identification of SMARCA2 mutations in humans provides insight into the function of the Snf2 helicase family.
- Published
- 2012
- Full Text
- View/download PDF