1. Assessing the contribution of rare variants to complex trait heritability from whole-genome sequence data.
- Author
-
Wainschtein P, Jain D, Zheng Z, Cupples LA, Shadyab AH, McKnight B, Shoemaker BM, Mitchell BD, Psaty BM, Kooperberg C, Liu CT, Albert CM, Roden D, Chasman DI, Darbar D, Lloyd-Jones DM, Arnett DK, Regan EA, Boerwinkle E, Rotter JI, O'Connell JR, Yanek LR, de Andrade M, Allison MA, McDonald MN, Chung MK, Fornage M, Chami N, Smith NL, Ellinor PT, Vasan RS, Mathias RA, Loos RJF, Rich SS, Lubitz SA, Heckbert SR, Redline S, Guo X, Chen Y-I, Laurie CA, Hernandez RD, McGarvey ST, Goddard ME, Laurie CC, North KE, Lange LA, Weir BS, Yengo L, Yang J, and Visscher PM
- Subjects
- Alleles, Humans, Linkage Disequilibrium, Polymorphism, Single Nucleotide genetics, Genome-Wide Association Study methods, Multifactorial Inheritance genetics
- Abstract
Analyses of data from genome-wide association studies on unrelated individuals have shown that, for human traits and diseases, approximately one-third to two-thirds of heritability is captured by common SNPs. However, it is not known whether the remaining heritability is due to the imperfect tagging of causal variants by common SNPs, in particular whether the causal variants are rare, or whether it is overestimated due to bias in inference from pedigree data. Here we estimated heritability for height and body mass index (BMI) from whole-genome sequence data on 25,465 unrelated individuals of European ancestry. The estimated heritability was 0.68 (standard error 0.10) for height and 0.30 (standard error 0.10) for body mass index. Low minor allele frequency variants in low linkage disequilibrium (LD) with neighboring variants were enriched for heritability, to a greater extent for protein-altering variants, consistent with negative selection. Our results imply that rare variants, in particular those in regions of low linkage disequilibrium, are a major source of the still missing heritability of complex traits and disease., (© 2022. The Author(s), under exclusive licence to Springer Nature America, Inc.)
- Published
- 2022
- Full Text
- View/download PDF