9 results on '"Bilguvar, K"'
Search Results
2. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy.
- Author
-
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, and Kruer MC
- Subjects
- Animals, Cerebral Palsy pathology, Cyclin D genetics, Cytoskeleton genetics, Drosophila genetics, Exome genetics, Extracellular Matrix genetics, Female, Focal Adhesions genetics, Genetic Predisposition to Disease, Genome, Human genetics, Humans, Male, Mutation genetics, Neurites metabolism, Neurites pathology, Risk Factors, Sequence Analysis, DNA, Signal Transduction genetics, Exome Sequencing, rhoB GTP-Binding Protein genetics, Cerebral Palsy genetics, F-Box Proteins genetics, Tubulin genetics, Tumor Suppressor Proteins genetics, beta Catenin genetics
- Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
- Published
- 2020
- Full Text
- View/download PDF
3. Biallelic loss of human CTNNA2, encoding αN-catenin, leads to ARP2/3 complex overactivity and disordered cortical neuronal migration.
- Author
-
Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY, Kaymakçalan H, Yılmaz C, Zaki MS, Rosti RO, Copeland B, Baek ST, Musaev D, Scott EC, Ben-Omran T, Kariminejad A, Kayserili H, Mojahedi F, Kara M, Cai N, Silhavy JL, Elsharif S, Fenercioglu E, Barshop BA, Kara B, Wang R, Stanley V, James KN, Nachnani R, Kalur A, Megahed H, Incecik F, Danda S, Alanay Y, Faqeih E, Melikishvili G, Mansour L, Miller I, Sukhudyan B, Chelly J, Dobyns WB, Bilguvar K, Jamra RA, Gunel M, and Gleeson JG
- Subjects
- Actin-Related Protein 2-3 Complex metabolism, Animals, Cerebral Cortex metabolism, Cerebral Cortex pathology, Embryo, Mammalian, Genome, Human, Humans, Mice, Mice, Inbred C57BL, Mutation, Nerve Tissue Proteins genetics, Neurons metabolism, Pedigree, alpha Catenin metabolism, Actin-Related Protein 2-3 Complex genetics, Cell Movement genetics, Cerebral Cortex physiology, Neurons pathology, alpha Catenin genetics
- Abstract
Neuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration. The αN-catenin paralog, αE-catenin, acts as a switch regulating the balance between β-catenin and Arp2/3 actin filament activities
1 . Loss of αN-catenin did not affect β-catenin signaling, but recombinant αN-catenin interacted with purified actin and repressed ARP2/3 actin-branching activity. The actin-binding domain of αN-catenin or ARP2/3 inhibitors rescued the neuronal phenotype associated with CTNNA2 loss, suggesting ARP2/3 de-repression as a potential disease mechanism. Our findings identify CTNNA2 as the first catenin family member with biallelic mutations in humans, causing a new pachygyria syndrome linked to actin regulation, and uncover a key factor involved in ARP2/3 repression in neurons.- Published
- 2018
- Full Text
- View/download PDF
4. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands.
- Author
-
Jin SC, Homsy J, Zaidi S, Lu Q, Morton S, DePalma SR, Zeng X, Qi H, Chang W, Sierant MC, Hung WC, Haider S, Zhang J, Knight J, Bjornson RD, Castaldi C, Tikhonoa IR, Bilguvar K, Mane SM, Sanders SJ, Mital S, Russell MW, Gaynor JW, Deanfield J, Giardini A, Porter GA Jr, Srivastava D, Lo CW, Shen Y, Watkins WS, Yandell M, Yost HJ, Tristani-Firouzi M, Newburger JW, Roberts AE, Kim R, Zhao H, Kaltman JR, Goldmuntz E, Chung WK, Seidman JG, Gelb BD, Seidman CE, Lifton RP, and Brueckner M
- Subjects
- Adult, Autistic Disorder pathology, Case-Control Studies, Child, Exome, Female, Gene Expression, Genome-Wide Association Study, Heart Defects, Congenital pathology, Heterozygote, High-Throughput Nucleotide Sequencing, Homozygote, Humans, Male, Mutation, Pedigree, Risk, Autistic Disorder genetics, Cardiac Myosins genetics, Genetic Predisposition to Disease, Growth Differentiation Factor 1 genetics, Heart Defects, Congenital genetics, Myosin Heavy Chains genetics, Vascular Endothelial Growth Factor Receptor-3 genetics
- Abstract
Congenital heart disease (CHD) is the leading cause of mortality from birth defects. Here, exome sequencing of a single cohort of 2,871 CHD probands, including 2,645 parent-offspring trios, implicated rare inherited mutations in 1.8%, including a recessive founder mutation in GDF1 accounting for ∼5% of severe CHD in Ashkenazim, recessive genotypes in MYH6 accounting for ∼11% of Shone complex, and dominant FLT4 mutations accounting for 2.3% of Tetralogy of Fallot. De novo mutations (DNMs) accounted for 8% of cases, including ∼3% of isolated CHD patients and ∼28% with both neurodevelopmental and extra-cardiac congenital anomalies. Seven genes surpassed thresholds for genome-wide significance, and 12 genes not previously implicated in CHD had >70% probability of being disease related. DNMs in ∼440 genes were inferred to contribute to CHD. Striking overlap between genes with damaging DNMs in probands with CHD and autism was also found.
- Published
- 2017
- Full Text
- View/download PDF
5. Biallelic mutations in the 3' exonuclease TOE1 cause pontocerebellar hypoplasia and uncover a role in snRNA processing.
- Author
-
Lardelli RM, Schaffer AE, Eggens VR, Zaki MS, Grainger S, Sathe S, Van Nostrand EL, Schlachetzki Z, Rosti B, Akizu N, Scott E, Silhavy JL, Heckman LD, Rosti RO, Dikoglu E, Gregor A, Guemez-Gamboa A, Musaev D, Mande R, Widjaja A, Shaw TL, Markmiller S, Marin-Valencia I, Davies JH, de Meirleir L, Kayserili H, Altunoglu U, Freckmann ML, Warwick L, Chitayat D, Blaser S, Çağlayan AO, Bilguvar K, Per H, Fagerberg C, Christesen HT, Kibaek M, Aldinger KA, Manchester D, Matsumoto N, Muramatsu K, Saitsu H, Shiina M, Ogata K, Foulds N, Dobyns WB, Chi NC, Traver D, Spaccini L, Bova SM, Gabriel SB, Gunel M, Valente EM, Nassogne MC, Bennett EJ, Yeo GW, Baas F, Lykke-Andersen J, and Gleeson JG
- Subjects
- Alleles, Animals, Female, Humans, Male, Mice, Neurodegenerative Diseases genetics, RNA, Messenger genetics, Spliceosomes genetics, Zebrafish, Cerebellar Diseases genetics, Exonucleases genetics, Mutation genetics, Nuclear Proteins genetics, RNA, Small Nuclear genetics
- Abstract
Deadenylases are best known for degrading the poly(A) tail during mRNA decay. The deadenylase family has expanded throughout evolution and, in mammals, consists of 12 Mg
2+ -dependent 3'-end RNases with substrate specificity that is mostly unknown. Pontocerebellar hypoplasia type 7 (PCH7) is a unique recessive syndrome characterized by neurodegeneration and ambiguous genitalia. We studied 12 human families with PCH7, uncovering biallelic, loss-of-function mutations in TOE1, which encodes an unconventional deadenylase. toe1-morphant zebrafish displayed midbrain and hindbrain degeneration, modeling PCH-like structural defects in vivo. Surprisingly, we found that TOE1 associated with small nuclear RNAs (snRNAs) incompletely processed spliceosomal. These pre-snRNAs contained 3' genome-encoded tails often followed by post-transcriptionally added adenosines. Human cells with reduced levels of TOE1 accumulated 3'-end-extended pre-snRNAs, and the immunoisolated TOE1 complex was sufficient for 3'-end maturation of snRNAs. Our findings identify the cause of a neurodegenerative syndrome linked to snRNA maturation and uncover a key factor involved in the processing of snRNA 3' ends.- Published
- 2017
- Full Text
- View/download PDF
6. Integrated genomic characterization of IDH1-mutant glioma malignant progression.
- Author
-
Bai H, Harmancı AS, Erson-Omay EZ, Li J, Coşkun S, Simon M, Krischek B, Özduman K, Omay SB, Sorensen EA, Turcan Ş, Bakırcığlu M, Carrión-Grant G, Murray PB, Clark VE, Ercan-Sencicek AG, Knight J, Sencar L, Altınok S, Kaulen LD, Gülez B, Timmer M, Schramm J, Mishra-Gorur K, Henegariu O, Moliterno J, Louvi A, Chan TA, Tannheimer SL, Pamir MN, Vortmeyer AO, Bilguvar K, Yasuno K, and Günel M
- Subjects
- Central Nervous System Neoplasms pathology, DNA Methylation, Embryonic Stem Cells metabolism, Forkhead Box Protein M1, Forkhead Transcription Factors genetics, Forkhead Transcription Factors metabolism, Gene Dosage, Gene Expression Regulation, Neoplastic, Genes, myc, Glioma pathology, Humans, Isocitrate Dehydrogenase metabolism, Phosphatidylinositol 3-Kinases genetics, Phosphatidylinositol 3-Kinases metabolism, Receptor, Notch1 genetics, Receptor, Notch1 metabolism, Central Nervous System Neoplasms genetics, Glioma genetics, Isocitrate Dehydrogenase genetics, Mutation
- Abstract
Gliomas represent approximately 30% of all central nervous system tumors and 80% of malignant brain tumors. To understand the molecular mechanisms underlying the malignant progression of low-grade gliomas with mutations in IDH1 (encoding isocitrate dehydrogenase 1), we studied paired tumor samples from 41 patients, comparing higher-grade, progressed samples to their lower-grade counterparts. Integrated genomic analyses, including whole-exome sequencing and copy number, gene expression and DNA methylation profiling, demonstrated nonlinear clonal expansion of the original tumors and identified oncogenic pathways driving progression. These include activation of the MYC and RTK-RAS-PI3K pathways and upregulation of the FOXM1- and E2F2-mediated cell cycle transitions, as well as epigenetic silencing of developmental transcription factor genes bound by Polycomb repressive complex 2 in human embryonic stem cells. Our results not only provide mechanistic insight into the genetic and epigenetic mechanisms driving glioma progression but also identify inhibition of the bromodomain and extraterminal (BET) family as a potential therapeutic approach.
- Published
- 2016
- Full Text
- View/download PDF
7. Exome sequencing links mutations in PARN and RTEL1 with familial pulmonary fibrosis and telomere shortening.
- Author
-
Stuart BD, Choi J, Zaidi S, Xing C, Holohan B, Chen R, Choi M, Dharwadkar P, Torres F, Girod CE, Weissler J, Fitzgerald J, Kershaw C, Klesney-Tait J, Mageto Y, Shay JW, Ji W, Bilguvar K, Mane S, Lifton RP, and Garcia CK
- Subjects
- Adult, Aged, Aged, 80 and over, Amino Acid Sequence, Case-Control Studies, Cells, Cultured, DNA Mutational Analysis, Female, Genetic Association Studies, Genetic Predisposition to Disease, Humans, Idiopathic Pulmonary Fibrosis pathology, Leukocytes physiology, Lod Score, Male, Middle Aged, Molecular Sequence Data, Pedigree, DNA Helicases genetics, Exome genetics, Exoribonucleases genetics, Idiopathic Pulmonary Fibrosis genetics, Telomere genetics, Telomere Shortening
- Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related disease featuring progressive lung scarring. To elucidate the molecular basis of IPF, we performed exome sequencing of familial kindreds with pulmonary fibrosis. Gene burden analysis comparing 78 European cases and 2,816 controls implicated PARN, an exoribonuclease with no previous connection to telomere biology or disease, with five new heterozygous damaging mutations in unrelated cases and none in controls (P = 1.3 × 10(-8)); mutations were shared by all affected relatives (odds in favor of linkage = 4,096:1). RTEL1, an established locus for dyskeratosis congenita, harbored significantly more new damaging and missense variants at conserved residues in cases than in controls (P = 1.6 × 10(-6)). PARN and RTEL1 mutation carriers had shortened leukocyte telomere lengths, and we observed epigenetic inheritance of short telomeres in family members. Together, these genes explain ~7% of familial pulmonary fibrosis and strengthen the link between lung fibrosis and telomere dysfunction.
- Published
- 2015
- Full Text
- View/download PDF
8. Genome-wide association study of intracranial aneurysm identifies three new risk loci.
- Author
-
Yasuno K, Bilguvar K, Bijlenga P, Low SK, Krischek B, Auburger G, Simon M, Krex D, Arlier Z, Nayak N, Ruigrok YM, Niemelä M, Tajima A, von und zu Fraunberg M, Dóczi T, Wirjatijasa F, Hata A, Blasco J, Oszvald A, Kasuya H, Zilani G, Schoch B, Singh P, Stüer C, Risselada R, Beck J, Sola T, Ricciardi F, Aromaa A, Illig T, Schreiber S, van Duijn CM, van den Berg LH, Perret C, Proust C, Roder C, Ozturk AK, Gaál E, Berg D, Geisen C, Friedrich CM, Summers P, Frangi AF, State MW, Wichmann HE, Breteler MM, Wijmenga C, Mane S, Peltonen L, Elio V, Sturkenboom MC, Lawford P, Byrne J, Macho J, Sandalcioglu EI, Meyer B, Raabe A, Steinmetz H, Rüfenacht D, Jääskeläinen JE, Hernesniemi J, Rinkel GJ, Zembutsu H, Inoue I, Palotie A, Cambien F, Nakamura Y, Lifton RP, and Günel M
- Subjects
- Cell Cycle, Cell Proliferation, Cohort Studies, Europe, Female, Genotype, Hemorrhage genetics, Humans, Japan, Male, Models, Genetic, Odds Ratio, Polymorphism, Single Nucleotide, Genome-Wide Association Study, Intracranial Aneurysm genetics
- Abstract
Saccular intracranial aneurysms are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with approximately 832,000 genotyped and imputed SNPs across discovery cohorts. We identified three new loci showing strong evidence for association with intracranial aneurysms in the combined dataset, including intervals near RBBP8 on 18q11.2 (odds ratio (OR) = 1.22, P = 1.1 x 10(-12)), STARD13-KL on 13q13.1 (OR = 1.20, P = 2.5 x 10(-9)) and a gene-rich region on 10q24.32 (OR = 1.29, P = 1.2 x 10(-9)). We also confirmed prior associations near SOX17 (8q11.23-q12.1; OR = 1.28, P = 1.3 x 10(-12)) and CDKN2A-CDKN2B (9p21.3; OR = 1.31, P = 1.5 x 10(-22)). It is noteworthy that several putative risk genes play a role in cell-cycle progression, potentially affecting the proliferation and senescence of progenitor-cell populations that are responsible for vascular formation and repair.
- Published
- 2010
- Full Text
- View/download PDF
9. Susceptibility loci for intracranial aneurysm in European and Japanese populations.
- Author
-
Bilguvar K, Yasuno K, Niemelä M, Ruigrok YM, von Und Zu Fraunberg M, van Duijn CM, van den Berg LH, Mane S, Mason CE, Choi M, Gaál E, Bayri Y, Kolb L, Arlier Z, Ravuri S, Ronkainen A, Tajima A, Laakso A, Hata A, Kasuya H, Koivisto T, Rinne J, Ohman J, Breteler MM, Wijmenga C, State MW, Rinkel GJ, Hernesniemi J, Jääskeläinen JE, Palotie A, Inoue I, Lifton RP, and Günel M
- Subjects
- Asian People genetics, Chromosomes, Human, Pair 2 genetics, Chromosomes, Human, Pair 8 genetics, Chromosomes, Human, Pair 9 genetics, Genome-Wide Association Study, Humans, Intracranial Aneurysm epidemiology, Intracranial Aneurysm pathology, Polymorphism, Single Nucleotide, White People genetics, Genetic Predisposition to Disease, Intracranial Aneurysm genetics
- Abstract
Stroke is the world's third leading cause of death. One cause of stroke, intracranial aneurysm, affects approximately 2% of the population and accounts for 500,000 hemorrhagic strokes annually in mid-life (median age 50), most often resulting in death or severe neurological impairment. The pathogenesis of intracranial aneurysm is unknown, and because catastrophic hemorrhage is commonly the first sign of disease, early identification is essential. We carried out a multistage genome-wide association study (GWAS) of Finnish, Dutch and Japanese cohorts including over 2,100 intracranial aneurysm cases and 8,000 controls. Genome-wide genotyping of the European cohorts and replication studies in the Japanese cohort identified common SNPs on chromosomes 2q, 8q and 9p that show significant association with intracranial aneurysm with odds ratios 1.24-1.36. The loci on 2q and 8q are new, whereas the 9p locus was previously found to be associated with arterial diseases, including intracranial aneurysm. Associated SNPs on 8q likely act via SOX17, which is required for formation and maintenance of endothelial cells, suggesting a role in development and repair of the vasculature; CDKN2A at 9p may have a similar role. These findings have implications for the pathophysiology, diagnosis and therapy of intracranial aneurysm.
- Published
- 2008
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.