1. Joining of metallic glasses in liquid via ultrasonic vibrations
- Author
-
Luyao Li, Xin Li, Zhiyuan Huang, Jinbiao Huang, Zehang Liu, Jianan Fu, Wenxin Wen, Yu Zhang, Shike Huang, Shuai Ren, and Jiang Ma
- Subjects
Science - Abstract
Abstract Joining processes especially for metallic materials play critical roles in manufacturing industries and structural applications, therefore they are essential to human life. As a more complex technique, under-liquid joining has far-reaching implications for national defense, offshore mining. Furthermore, up-to-now, the effective joining of metals in extreme environments, such as the flammable organo-solvent or the arctic liquid nitrogen, is still uninvestigated. Therefore, an efficient under-liquid joining approach is urgently called for. Here we report a method to join different types of metallic glasses under water, seawater, alcohol and liquid-nitrogen. The dynamic heterogeneity and liquid-like region expansion induces fluid-like behavior under ultrasonic vibration to promote oxide layer dispersion and metal bonding, allowing metallic glasses to be successfully joined in heat-free conditions, while still exhibiting excellent tensile strength (1522 MPa), bending strength (2930 MPa) and improved corrosion properties. Our results provide a promising strategy for manufacturing under offshore, polar, oil-gas and space environments.
- Published
- 2023
- Full Text
- View/download PDF