Abstract The Indo-Pacific king mackerel, scientifically known as Scomberomorus guttatus, is a valued marine species that holds significant commercial importance in the Indo-Pacific region. However, the lack of genomic resources has hindered a comprehensive understanding of this species. In this study, we constructed a genome of Indo-Pacific king mackerel at the chromosome level using a combination of PacBio HiFi reads and a chromosome contact map (Hi-C). The resulting genome had high contig and scaffold N50 values of 8.84 Mb and 32.9 Mb, respectively. In the genome assembly, which is 797.66 Mb in size and consists of 24 chromosomes, we also identified 35.89% repetitive elements and predicted 25,886 protein-coding genes. Our study not only benefits to reveal the possible mechanism of adaptive evolution in this fish, but also offers insight for the future sustainable management of these valuable biological resources.