David R. Nelson, Sven Sommerwerk, Alain Goossens, José C. Martins, Laurens Pauwels, Jacob Pollier, Tessa Moses, Philipp Arendt, Dieter Buyst, Jan Mertens, Asaph Aharoni, Prashant D. Sonawane, René Csuk, and Karel Miettinen
Triterpenoids are widespread bioactive plant defence compounds with potential use as pharmaceuticals, pesticides and other high-value products. Enzymes belonging to the cytochrome P450 family have an essential role in creating the immense structural diversity of triterpenoids across the plant kingdom. However, for many triterpenoid oxidation reactions, the corresponding enzyme remains unknown. Here we characterize CYP716 enzymes from different medicinal plant species by heterologous expression in engineered yeasts and report ten hitherto unreported triterpenoid oxidation activities, including a cyclization reaction, leading to a triterpenoid lactone. Kingdom-wide phylogenetic analysis of over 400 CYP716s from over 200 plant species reveals details of their evolution and suggests that in eudicots the CYP716s evolved specifically towards triterpenoid biosynthesis. Our findings underscore the great potential of CYP716s as a source for generating triterpenoid structural diversity and expand the toolbox available for synthetic biology programmes for sustainable production of bioactive plant triterpenoids., Cytochrome P450 family enzymes have an essential role in the creation of triterpenoid diversity in plants. Here, the authors describe triterpenoid synthesis as mediated by CYP716 enzymes in medicinal plant species, and perform phylogenetic analysis to describe CYP716 molecular evolution in plants.