1. Engineering the vibrational coherence of vision into a synthetic molecular device
- Author
-
Gueye, Moussa, Manathunga, Madushanka, Agathangelou, Damianos, Orozco, Yoelvis, Paolino, Marco, Fusi, Stefania, Haacke, Stefan, Olivucci, Massimo, Leónard, Jérémie, Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), Université de Strasbourg (UNISTRA)-Matériaux et nanosciences d'Alsace (FMNGE), Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Chimie du CNRS (INC)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique, Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA), Department of Chemistry, Bowling Green State University, and Dipartimento di Biotechnologie, Chimica e Farmacia, Università di Siena
- Subjects
Genetics and Molecular Biology (all) ,Rhodopsin ,Alkylation ,Light ,Science ,Biochemistry ,Vibration ,Article ,Physics and Astronomy (all) ,Biomimetic Materials ,Physics::Atomic and Molecular Clusters ,Animals ,Humans ,Pyrroles ,Physics::Chemical Physics ,lcsh:Science ,Vision, Ocular ,ComputingMilieux_MISCELLANEOUS ,Quantitative Biology::Biomolecules ,Spectrum Analysis ,Chemistry (all) ,Optical Devices ,Chemical Engineering ,Photochemical Processes ,Indans ,Retinaldehyde ,Quantum Theory ,lcsh:Q ,[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph] ,Biochemistry, Genetics and Molecular Biology (all) - Abstract
The light-induced double-bond isomerization of the visual pigment rhodopsin operates a molecular-level optomechanical energy transduction, which triggers a crucial protein structure change. In fact, rhodopsin isomerization occurs according to a unique, ultrafast mechanism that preserves mode-specific vibrational coherence all the way from the reactant excited state to the primary photoproduct ground state. The engineering of such an energy-funnelling function in synthetic compounds would pave the way towards biomimetic molecular machines capable of achieving optimum light-to-mechanical energy conversion. Here we use resonance and off-resonance vibrational coherence spectroscopy to demonstrate that a rhodopsin-like isomerization operates in a biomimetic molecular switch in solution. Furthermore, by using quantum chemical simulations, we show why the observed coherent nuclear motion critically depends on minor chemical modifications capable to induce specific geometric and electronic effects. This finding provides a strategy for engineering vibrationally coherent motions in other synthetic systems., The ultrafast, vibrationally coherent photoisomerization of rhodopsin is a model of efficient photomechanical energy conversion at the molecular scale. Here, the authors demonstrate a similar photoreaction in synthetic compounds, unraveling the underlying mechanism and discussing its implications.
- Published
- 2018