1. Inferring replication timing and proliferation dynamics from single-cell DNA sequencing data
- Author
-
Adam C. Weiner, Marc J. Williams, Hongyu Shi, Ignacio Vázquez-García, Sohrab Salehi, Nicole Rusk, Samuel Aparicio, Sohrab P. Shah, and Andrew McPherson
- Subjects
Science - Abstract
Abstract Dysregulated DNA replication is a cause and a consequence of aneuploidy in cancer, yet the interplay between copy number alterations (CNAs), replication timing (RT) and cell cycle dynamics remain understudied in aneuploid tumors. We developed a probabilistic method, PERT, for simultaneous inference of cell-specific replication and copy number states from single-cell whole genome sequencing (scWGS) data. We used PERT to investigate clone-specific RT and proliferation dynamics in >50,000 cells obtained from aneuploid and clonally heterogeneous cell lines, xenografts and primary cancers. We observed bidirectional relationships between RT and CNAs, with CNAs affecting X-inactivation producing the largest RT shifts. Additionally, we found that clone-specific S-phase enrichment positively correlated with ground-truth proliferation rates in genomically stable but not unstable cells. Together, these results demonstrate robust computational identification of S-phase cells from scWGS data, and highlight the importance of RT and cell cycle properties in studying the genomic evolution of aneuploid tumors.
- Published
- 2024
- Full Text
- View/download PDF