1. In vitro metabolite identification of acetylbenzylfentanyl, benzoylbenzylfentanyl, 3-fluoro-methoxyacetylfentanyl, and 3-phenylpropanoylfentanyl using LC-QTOF-HRMS together with synthesized references
- Author
-
Rautio, Tobias, Vangerven, Daan, Dahlén, Johan, Watanabe, Shimpei, Kronstrand, Robert, Vikingsson, Svante, Konradsson, Peter, Wu, Xiongyu, Green, Henrik, Rautio, Tobias, Vangerven, Daan, Dahlén, Johan, Watanabe, Shimpei, Kronstrand, Robert, Vikingsson, Svante, Konradsson, Peter, Wu, Xiongyu, and Green, Henrik
- Abstract
Acetylbenzylfentanyl, benzoylbenzylfentanyl, 3-fluoro-methoxyacetylfentanyl, and 3-phenylpropanoylfentanyl are fentanyl analogs that have been reported to the European Monitoring Centre for Drugs and Drug Addiction in recent years. The aim of this study was to identify metabolic pathways and potential biomarker metabolites of these fentanyl analogs. The compounds were incubated (5 mu M) with cryopreserved hepatocytes for up to 5 h in vitro. Metabolites were analyzed with liquid chromatography-quadrupole time of flight-high-resolution mass spectrometry (LC-QTOF-HRMS). The experiments showed that acetylbenzylfentanyl, benzoylbenzylfentanyl, and 3-phenylpropanoylfentanyl were mainly metabolized through N-dealkylation (forming nor-metabolites) and 3-fluoro-methoxyacetylfentanyl mainly through demethylation. Other observed metabolites were formed by mono-/dihydroxylation, dihydrodiol formation, demethylation, dehydrogenation, amide hydrolysis, and/or glucuronidation. The experiments showed that a large number of metabolites of 3-phenylpropanoylfentanyl were formed. The exact position of hydroxy groups in formed monohydroxy metabolites could not be established solely based upon recorded MSMS spectra of hepatocyte samples. Therefore, potential monohydroxy metabolites of 3-phenylpropanoylfentanyl, with the hydroxy group in different positions, were synthesized and analyzed together with the hepatocyte samples. This approach could reveal that the beta position of the phenylpropanoyl moiety was highly favored; beta-OH-phenylpropanoylfentanyl was the most abundant metabolite after the nor-metabolite. Both metabolites have the potential to serve as biomarkers for 3-phenylpropanoylfentanyl. The nor-metabolites of acetylbenzylfentanyl, benzoylbenzylfentanyl, and 3-fluoro-methoxyacetylfentanyl do also seem to be suitable biomarker metabolites, as do the demethylated metabolite of 3-fluoro-methoxyacetylfentanyl. Identified metabolic pathways and formed metabolites were in agreement, Funding Agencies|Eurostars-2 Joint Programme (European Commission) [E! 113377]; European Unions Horizon 2020 research and innovation program; Swedens Innovation Agency VINNOVA [2019-03566]; Strategic Research Area in Forensic Sciences (Strategiomradet forensiska vetenskaper) at Linkoeping University
- Published
- 2023
- Full Text
- View/download PDF