1. Nur77 controls tolerance induction, terminal differentiation, and effector functions in semi-invariant natural killer T cells.
- Author
-
Kumar A, Hill TM, Gordy LE, Suryadevara N, Wu L, Flyak AI, Bezbradica JS, Van Kaer L, and Joyce S
- Subjects
- Animals, Cells, Cultured, Mice, Mice, Knockout, Receptors, Antigen, T-Cell, Thymocytes, Cell Differentiation genetics, Cell Differentiation immunology, Immune Tolerance genetics, Immune Tolerance immunology, Natural Killer T-Cells immunology, Natural Killer T-Cells metabolism, Nuclear Receptor Subfamily 4, Group A, Member 1 genetics, Nuclear Receptor Subfamily 4, Group A, Member 1 immunology, Nuclear Receptor Subfamily 4, Group A, Member 1 metabolism
- Abstract
Semi-invariant natural killer T (iNKT) cells are self-reactive lymphocytes, yet how this lineage attains self-tolerance remains unknown. iNKT cells constitutively express high levels of Nr4a1 -encoded Nur77, a transcription factor that integrates signal strength downstream of the T cell receptor (TCR) within activated thymocytes and peripheral T cells. The function of Nur77 in iNKT cells is unknown. Here we report that sustained Nur77 overexpression (Nur77
tg ) in mouse thymocytes abrogates iNKT cell development. Introgression of a rearranged Vα14-Jα18 TCR-α chain gene into the Nur77tg (Nur77tg ;Vα14tg ) mouse rescued iNKT cell development up to the early precursor stage, stage 0. iNKT cells in bone marrow chimeras that reconstituted thymic cellularity developed beyond stage 0 precursors and yielded IL-4-producing NKT2 cell subset but not IFN-γ-producing NKT1 cell subset. Nonetheless, the developing thymic iNKT cells that emerged in these chimeras expressed the exhaustion marker PD1 and responded poorly to a strong glycolipid agonist. Thus, Nur77 integrates signals emanating from the TCR to control thymic iNKT cell tolerance induction, terminal differentiation, and effector functions., Competing Interests: The authors declare no competing interest.- Published
- 2020
- Full Text
- View/download PDF