1. Cryptohermitian Picture of Scattering Using Quasilocal Metric Operators
- Author
-
Miloslav Znojil
- Subjects
cryptohermitian observables ,unitary scattering ,Runge-Kutta discretization ,quasilocal metric operators ,Mathematics ,QA1-939 - Abstract
One-dimensional unitary scattering controlled by non-Hermitian (typically, PT-symmetric) quantum Hamiltonians H ≠ H† is considered. Treating these operators via Runge-Kutta approximation, our three-Hilbert-space formulation of quantum theory is reviewed as explaining the unitarity of scattering. Our recent paper on bound states [Znojil M., SIGMA 5 (2009), 001, 19 pages, arXiv:0901.0700] is complemented by the text on scattering. An elementary example illustrates the feasibility of the resulting innovative theoretical recipe. A new family of the so called quasilocal inner products in Hilbert space is found to exist. Constructively, these products are all described in terms of certain non-equivalent short-range metric operators Θ ≠ I represented, in Runge-Kutta approximation, by (2R–1)-diagonal matrices.
- Published
- 2009
- Full Text
- View/download PDF