1. Incompressible Navier-Stokes Calculations in Pump Flows
- Author
-
Kiris, Cetin, Chang, Leon, and Kwak, Dochan
- Subjects
Fluid Mechanics And Heat Transfer - Abstract
Flow through pump components, such as the SSME-HPFTP Impeller and an advanced rocket pump impeller, is efficiently simulated by solving the incompressible Navier-Stokes equations. The solution method is based on the pseudo compressibility approach and uses an implicit-upwind differencing scheme together with the Gauss-Seidel line relaxation method. The equations are solved in steadily rotating reference frames and the centrifugal force and the Coriolis force are added to the equation of motion. Current computations use one-equation Baldwin-Barth turbulence model which is derived from a simplified form of the standard k-epsilon model equations. The resulting computer code is applied to the flow analysis inside an 11-inch SSME High Pressure Fuel Turbopump impeller, and an advanced rocket pump impeller. Numerical results of SSME-HPFTP impeller flow are compared with experimental measurements. In the advanced pump impeller, the effects of exit and shroud cavities are investigated. Flow analyses at design conditions will be presented.
- Published
- 1993