1. Choice of velocity variables for complex flow computation
- Author
-
Shyy, W and Chang, G. C
- Subjects
Fluid Mechanics And Heat Transfer - Abstract
The issue of adopting the velocity components as dependent velocity variables for the Navier-Stokes flow computations is investigated. The viewpoint advocated is that a numerical algorithm should preferably honor both the physical conservation law in differential form and the geometric conservation law in discrete form. With the use of Cartesian velocity vector, the momentum equations in curvilinear coordinates can retain the full conservation-law form and satisfy the physical conservation laws. With the curvilinear velocity components, source terms appear in differential equations and hence the full conservation law form can not be retained. In discrete expressions, algorithms based on the Cartesian components can satisfy the geometric conservation-law form for convection terms but not for viscous terms; those based on the curvilinear components, on the other hand, cannot satisfy the geometric conservation-law form for either convection or viscous terms. Several flow solutions for domain with 90 and 360 degree turnings are presented to illustrate the issues of using the Cartesian velocity components and the staggered grid arrangement.
- Published
- 1991