1. A Fast-Response Red Shifted Fluorescent Probe for Detection of H2S in Living Cells
- Author
-
Ismail Ismail, Zhuoyue Chen, Xiuru Ji, Lu Sun, Long Yi, and Zhen Xi
- Subjects
fluorescent probe ,red shifted ,h2s ,bioimaging ,Organic chemistry ,QD241-441 - Abstract
Near-infrared (NIR) fluorescent probes are attractive tools for bioimaging applications because of their low auto-fluorescence interference, minimal damage to living samples, and deep tissue penetration. H2S is a gaseous signaling molecule that is involved in redox homeostasis and numerous biological processes in vivo. To this end, we have developed a new red shifted fluorescent probe 1 to detect physiological H2S in live cells. The probe 1 is based on a rhodamine derivative as the red shifted fluorophore and the thiolysis of 7-nitro 1,2,3-benzoxadiazole (NBD) amine as the H2S receptor. The probe 1 displays fast fluorescent enhancement at 660 nm (about 10-fold turn-ons, k2 = 29.8 M−1s−1) after reacting with H2S in buffer (pH 7.4), and the fluorescence quantum yield of the activated red shifted product can reach 0.29. The probe 1 also exhibits high selectivity and sensitivity towards H2S. Moreover, 1 is cell-membrane-permeable and mitochondria-targeting, and can be used for imaging of endogenous H2S in living cells. We believe that this red shifted fluorescent probe can be a useful tool for studies of H2S biology.
- Published
- 2020
- Full Text
- View/download PDF