1. Experimental Investigation on Unloading-Induced Sliding Behavior of Dry Sands Subjected to Constant Shear Force
- Author
-
Wengang Dang, Kang Tao, Jinyang Fu, and Bangbiao Wu
- Subjects
dry sands ,direct shear test ,unloading normal force ,shear force ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Infilled joints or faults are often subjected to long-term stable shear forces, and nature surface processes of normal unloading can change the frictional balance. Therefore, it is essential to study the sliding behavior of such granular materials under such unloading conditions, since they are usually the filling matter. We conducted two groups of normal unloading direct shear tests considering two variables: unloading rate and the magnitude of constant shear force. Dry sands may slide discontinuously during normal unloading, and the slip velocity does not increase uniformly with unloading time. Due to horizontal particle interlacing and normal relaxation, there will be sliding velocity fluctuations and even temporary intermissions. At the stage of sliding acceleration, the normal force decreases with a higher unloading rate and increases with a larger shear force at the same sliding velocity. The normal forces obtained from the tests are less than those calculated by Coulomb’s theory in the conventional constant-rate shear test. Under the same unloading rate, the range of apparent friction coefficient variation is narrower under larger shear forces. This study has revealed the movement patterns of natural granular layers and is of enlightening significance in the prevention of corresponding geohazards.
- Published
- 2025
- Full Text
- View/download PDF