Background: Chondrosarcomas rank as the second most common primary bone malignancy. Characterized by the production of a cartilaginous matrix, these tumors typically exhibit resistance to both radiotherapy (RT) and chemotherapy (CT), resulting in overall poor outcomes: a high rate of mortality, especially among children and adolescents. Due to the considerable resistance to current conventional therapies such as surgery, CT, and RT, there is an urgent need to identify factors contributing to resistance and discover new strategies for optimal treatment. Over the past decade, researchers have delved into the dysregulation of genes associated with tumor development and therapy resistance to identify potential therapeutic targets for overcoming resistance. Recent studies have suggested several promising biomarkers and therapeutic targets for chondrosarcoma, including isocitrate dehydrogenase (IDH1/2) and COL2A1. Molecule-targeting agents and immunotherapies have demonstrated favorable antitumor activity in clinical studies involving patients with advanced chondrosarcomas. In this systematic review, we delineate the clinical features of chondrosarcoma and provide a summary of gene dysregulation and mutation associated with tumor development, as well as targeted therapies as a promising molecular approach. Finally, we analyze the probable role of the tumor microenvironment in chondrosarcoma drug resistance., Methods: A systematic search was conducted across major medical databases (PubMed, Embase, and Cochrane Library) up to 10 November 2023. The search strategy utilized relevant Medical Subject Heading (MeSH) terms and keywords related to "chondrosarcomas", "target therapies", "immunotherapies", and "outcomes". The studies included in this review consist of randomized controlled trials, non-randomized controlled trials, and cohort studies reporting on the use of target therapies for the treatment of chondrosarcoma in human subjects., Results: Of the initial 279 articles identified, 40 articles were included in the article. The exclusion of 140 articles was due to reasons such as irrelevance, non-reporting of selected results, systematic literature review or meta-analysis, and lack of details on the method/results. Three tables highlighted clinical studies, preclinical studies, and ongoing clinical trials, encompassing 13, 7, and 20 studies, respectively. For the clinical study, a range of molecular targets, such as death receptors 4/5 (DR4 and DR5) (15%), platelet-derived growth factor receptor-alpha or -beta (PDGFR-α, PDGFR-β) (31%), were investigated. Adverse events were mainly constitutional symptoms emphasizing that to improve therapy tolerance, careful observation and tailored management are essential. Preclinical studies analyzed various molecular targets such as DR4/5 (28.6%) and COX-2 (28.6%). The prevalent indicator of antitumoral activity was the apoptotic rate of both a single agent (tumor necrosis factor-related apoptosis-inducing ligand: TRAIL) and double agents (TRAIL-DOX, TRAIL-MG132). Ongoing clinical trials, the majority in Phase II (53.9%), highlighted possible therapeutic strategies such as IDH1 inhibitors and PD-1/PD-L1 inhibitors (30.8%)., Conclusions: The present review offers a comprehensive analysis of targeted therapeutics for skull base chondrosarcomas, highlighting a complex landscape characterized by a range of treatment approaches and new opportunities for tailored interventions. The combination of results from molecular research and clinical trials emphasizes the necessity for specialized treatment strategies and the complexity of chondrosarcoma biology.