1. Characterization of Banana SNARE Genes and Their Expression Analysis under Temperature Stress and Mutualistic and Pathogenic Fungal Colonization
- Author
-
Bin Wang, Yanbing Xu, Shiyao Xu, Huan Wu, Pengyan Qu, Zheng Tong, Peitao Lü, and Chunzhen Cheng
- Subjects
banana ,SNARE ,temperature stress ,Serendipita indica ,Fusarium oxysporum f. sp. cubense ,Botany ,QK1-989 - Abstract
SNAREs (soluble N-ethylmaleimide-sensitive-factor attachment protein receptors) are engines for almost all of the membrane fusion and exocytosis events in organism cells. In this study, we identified 84 SNARE genes from banana (Musa acuminata). Gene expression analysis revealed that the expression of MaSNAREs varied a lot in different banana organs. By analyzing their expression patterns under low temperature (4 °C), high temperature (45 °C), mutualistic fungus (Serendipita indica, Si) and fungal pathogen (Fusarium oxysporum f. sp. Cubense Tropical Race 4, FocTR4) treatments, many MaSNAREs were found to be stress responsive. For example, MaBET1d was up-regulate by both low and high temperature stresses; MaNPSN11a was up-regulated by low temperature but down-regulated by high temperature; and FocTR4 treatment up-regulated the expression of MaSYP121 but down-regulated MaVAMP72a and MaSNAP33a. Notably, the upregulation or downregulation effects of FocTR4 on the expression of some MaSNAREs could be alleviated by priorly colonized Si, suggesting that they play roles in the Si-enhanced banana wilt resistance. Foc resistance assays were performed in tobacco leaves transiently overexpressing MaSYP121, MaVAMP72a and MaSNAP33a. Results showed that transient overexpression of MaSYP121 and MaSNPA33a suppressed the penetration and spread of both Foc1 (Foc Race 1) and FocTR4 in tobacco leaves, suggesting that they play positive roles in resisting Foc infection. However, the transient overexpression of MaVAMP72a facilitated Foc infection. Our study can provide a basis for understanding the roles of MaSNAREs in the banana responses to temperature stress and mutualistic and pathogenic fungal colonization.
- Published
- 2023
- Full Text
- View/download PDF