1. Single-Molecule Real-Time (SMRT) Full-Length RNA-Sequencing Reveals Novel and Distinct mRNA Isoforms in Human Bone Marrow Cell Subpopulations
- Author
-
Elizabeth Tseng, Miloslav Sanda, Primo Baybayan, Garrett T. Graham, Anna T. Riegel, Marcel O. Schmidt, Anton Wellstein, Jean-Baptiste Mazarati, Robert Sebra, and Anne Deslattes Mays
- Subjects
0301 basic medicine ,Protein isoform ,Gene isoform ,lcsh:QH426-470 ,Population ,bone marrow cell subpopulations ,Bone Marrow Cells ,Biology ,Article ,Transcriptome ,03 medical and health sciences ,0302 clinical medicine ,Exome Sequencing ,Genetics ,medicine ,Transcriptional regulation ,Humans ,Cell Lineage ,RNA, Messenger ,education ,mRNA isoforms ,Genetics (clinical) ,education.field_of_study ,Messenger RNA ,High-Throughput Nucleotide Sequencing ,RNA ,Genomics ,Molecular biology ,Single Molecule Imaging ,Alternative Splicing ,lcsh:Genetics ,030104 developmental biology ,medicine.anatomical_structure ,full length RNAseq ,protein isoforms ,Bone marrow ,030217 neurology & neurosurgery - Abstract
Hematopoietic cells are continuously replenished from progenitor cells that reside in the bone marrow. To evaluate molecular changes during this process, we analyzed the transcriptomes of freshly harvested human bone marrow progenitor (lineage-negative) and differentiated (lineage-positive) cells by single-molecule real-time (SMRT) full-length RNA-sequencing. This analysis revealed a ~5-fold higher number of transcript isoforms than previously detected and showed a distinct composition of individual transcript isoforms characteristic for bone marrow subpopulations. A detailed analysis of messenger RNA (mRNA) isoforms transcribed from the ANXA1 and EEF1A1 loci confirmed their distinct composition. The expression of proteins predicted from the transcriptome analysis was evaluated by mass spectrometry and validated previously unknown protein isoforms predicted e.g., for EEF1A1. These protein isoforms distinguished the lineage negative cell population from the lineage positive cell population. Finally, transcript isoforms expressed from paralogous gene loci (e.g., CFD, GATA2, HLA-A, B, and C) also distinguished cell subpopulations but were only detectable by full-length RNA sequencing. Thus, qualitatively distinct transcript isoforms from individual genomic loci separate bone marrow cell subpopulations indicating complex transcriptional regulation and protein isoform generation during hematopoiesis.
- Published
- 2019