5 results on '"Paleczny J"'
Search Results
2. The Antimicrobial and Antibiofilm In Vitro Activity of Liquid and Vapour Phases of Selected Essential Oils against Staphylococcus aureus .
- Author
-
Brożyna M, Paleczny J, Kozłowska W, Chodaczek G, Dudek-Wicher R, Felińczak A, Gołębiewska J, Górniak A, and Junka A
- Abstract
The high resistance of staphylococcal biofilm against antibiotics and developing resistance against antiseptics induces a search for novel antimicrobial compounds. Due to acknowledged and/or alleged antimicrobial activity of EOs, their application seems to be a promising direction to follow. Nevertheless, the high complexity of EOs composition and differences in laboratory protocols of the antimicrobial activity assessment hinders the exact estimation of EOs effectiveness. To overcome these disadvantages, in the present work we analysed the effectiveness of volatile and liquid forms of seven EOs (derived from thyme, tea tree, basil, rosemary, eucalyptus, lavender, and menthol mint) against 16 staphylococcal biofilm-forming strains using cohesive set of in vitro techniques, including gas chromatography-mass spectrometry, inverted Petri dish, modified disk-diffusion assay, microdilution techniques, antibiofilm dressing activity measurement, AntiBioVol protocol, fluorescence/confocal microscopy, and dynamic light scattering. Depending on the requirements of the technique, EOs were applied in emulsified or non-emulsified form. The obtained results revealed that application of different in vitro techniques allows us to get a comprehensive set of data and to gain insight into the analysed phenomena. In the course of our investigation, liquid and volatile fractions of thyme EO displayed the highest antibiofilm activity. Liquid fractions of rosemary oil were the second most active against S. aureus . Vapour phases of tea tree and lavender oils exhibited the weakest anti-staphylococcal activity. The size of emulsified droplets was the lowest for T-EO and the highest for L-EO. Bearing in mind the limitations of the in vitro study, results from presented analysis may be of pivotal meaning for the potential application of thymol as a antimicrobial agent used to fight against staphylococcal biofilm-based infections.
- Published
- 2021
- Full Text
- View/download PDF
3. 3D Printing of Thermoresponsive Hydrogel Laden with an Antimicrobial Agent towards Wound Healing Applications.
- Author
-
Nizioł M, Paleczny J, Junka A, Shavandi A, Dawiec-Liśniewska A, and Podstawczyk D
- Abstract
Thermoresponsive hydrogel-based wound dressings with an incorporated antimicrobial agent can be fabricated employing 3D printing technology. A novel printable ink containing poly(N-isopropylacrylamide) (PNIPAAm) precursors, sodium alginate (ALG), methylcellulose (MC) that is laden with a mixture of octenidine dihydrochloride and 2-phenoxyethanol (Octenisept
® , OCT) possess accurate printability and shape fidelity. This study also provides the protocol of ink's use for the 3D printing of hydrogel scaffolds. The hydrogel's physicochemical properties and drug release profiles from the hydrogel specimens to the external solution have been determined at two temperatures (20 and 37 °C). The release test showed a sustained OCT delivery into ultrapure water and the PBS solution. The temperature-responsive hydrogel exhibited antimicrobial activity against Staphylococcus aureus , Candida albicans , and Pseudomonas aeruginosa and demonstrated non-cytotoxicity towards fibroblasts. The thermoresponsive behavior along with biocompatibility, antimicrobial activity, and controlled drug release make this hydrogel a promising class of materials for wound dressing applications.- Published
- 2021
- Full Text
- View/download PDF
4. Activity of Liquid and Volatile Fractions of Essential Oils against Biofilm Formed by Selected Reference Strains on Polystyrene and Hydroxyapatite Surfaces.
- Author
-
Dudek-Wicher R, Paleczny J, Kowalska-Krochmal B, Szymczyk-Ziółkowska P, Pachura N, Szumny A, and Brożyna M
- Abstract
Biofilms are surface-attached, structured microbial communities displaying higher tolerance to antimicrobial agents in comparison to planktonic cells. An estimated 80% of all infections are thought to be biofilm-related. The drying pipeline of new antibiotics efficient against biofilm-forming pathogens urges the search for alternative routes of treatment. Essential Oils (EOs), extracted from medicinally important plants, are a reservoir of bioactive compounds that may serve as a foothold in investigating novel antibiofilm compounds. The aim of this study was to compare antimicrobial activity of liquid and volatile fractions of tested EOs against biofilm-forming pathogens using different techniques. In this research, we tested five EOs, extracted from Syzygium aromaticum L., Boswelia serrata Roxb., Juniperus virginiana L., Pelargonium graveolens L. and Melaleuca alternifolia Cheel., against planktonic and biofilm forms of five selected reference strains, namely Staphylococcus aureus , Enterococcus faecalis, Klebsiella pneumoniae , Pseudomonas aeruginosa, Escherichia coli , and Candida albicans. To obtain cohesive results, we applied four various methodological approaches: to assess the activity of the liquid fraction of EOs, disc diffusion and the microdilution method were applied; to test EOs' volatile fraction, the AntiBioVol assay and modified Antibiofilm Dressing Activity Measurement (A.D.A.M.) were used. The molecular composition and dynamics of antimicrobial substances released from specific EOs was measured using Gas Chromatography-Mass Spectrometry (GC-MS). The antimicrobial potency of EO's volatile fraction against biofilm formed by tested strains differed from that of the liquid fraction and was related to the molecular weight of volatile compounds. The liquid fraction of CW-EO and volatile fraction of F-EO acted in the strongest manner against biofilm of C. albicans . The addition of 0.5% Tween 20 to liquid phase, enhanced activity of G-EO against E. coli and K. pneumoniae biofilm. EO activity depended on the microbial species it was applied against and the chosen assessment methodology. While all tested EOs have shown a certain level of antimicrobial and antibiofilm effect, our results indicate that the choice of EO to be applied against a specific biofilm-forming pathogen requires careful consideration with regard to the above-listed aspects. Nevertheless, the results presented in this research contribute to the growing body of evidence indicating the beneficial effects of EOs, which may be applied to fight biofilm-forming pathogens.
- Published
- 2021
- Full Text
- View/download PDF
5. In Vitro Susceptibility of Multi-Drug Resistant Klebsiella pneumoniae Strains Causing Nosocomial Infections to Fosfomycin. A Comparison of Determination Methods.
- Author
-
Mączyńska B, Paleczny J, Oleksy-Wawrzyniak M, Choroszy-Król I, and Bartoszewicz M
- Abstract
Introduction: Over the past few decades, Klebsiella pneumoniae strains increased their pathogenicity and antibiotic resistance, thereby becoming a major therapeutic challenge. One of the few available therapeutic options seems to be intravenous fosfomycin. Unfortunately, the determination of sensitivity to fosfomycin performed in hospital laboratories can pose a significant problem. Therefore, the aim of the present research was to evaluate the activity of fosfomycin against clinical, multidrug-resistant Klebsiella pneumoniae strains isolated from nosocomial infections between 2011 and 2020, as well as to evaluate the methods routinely used in hospital laboratories to assess bacterial susceptibility to this antibiotic., Materials and Methods: 43 multidrug-resistant Klebsiella strains isolates from various infections were tested. All the strains had ESBL enzymes, and 20 also showed the presence of carbapenemases. Susceptibility was determined using the diffusion method (E-test) and the automated system (Phoenix), which were compared with the reference method (agar dilution)., Results: For the reference method and for the E-test, the percentage of strains sensitive to fosfomycin was 65%. For the Phoenix system, the percentage of susceptible strains was slightly higher and stood at 72%. The percentage of fosfomycin-resistant strains in the Klebsiella carbapenemase-producing group was higher (45% for the reference method and E-test and 40% for the Phoenix method) than in carbapenemase-negative strains (25%, 25%, and 20%, respectively). Full (100%) susceptibility categorical agreement was achieved for the E-test and the reference method. Agreement between the automated Phoenix system and the reference method reached 86%., Conclusions: Fosfomycin appears to be the antibiotic with a potential for use in the treatment of infections with multidrug-resistant Klebsiella strains. Susceptibility to this drug is exhibited by some strains, which are resistant to colistin and carbapenems. The E-test, unlike the Phoenix method, can be an alternative to the reference method in the routine determination of fosfomycin susceptibility, as it shows agreement in terms of sensitivity categories and only slight differences in MIC values. The Phoenix system, in comparison to the reference method, shows large discrepancies in the MIC values and in the susceptibility category.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.