1. Research on the Effect of Desert Sand on Pore Structure of Fiber Reinforced Mortar Based on X-CT Technology
- Author
-
Fangying Shi, Tianyu Li, Weikang Wang, Ruidan Liu, Xiaoyan Liu, Huiwen Tian, and Nazhen Liu
- Subjects
desert sand ,X-CT ,MIP ,pore structure ,porosity ,mechanical property ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
Concrete is a multi-phase, porous system. The pore structure has an important influence on the properties of the concrete. In this paper, a kind of fiber reinforced mortar was prepared with desert sand and its pore structure was studied. The MIP technique was used to investigate the pore structure characteristics between 1 nm and 500 μm (in diameter). Meanwhile, the μX-CT technique was used to study the pore structure characteristics above 200 μm. It was found that the total porosity tends to decrease first and then increase as the dosage of desert sand increased. The porosity decreased gradually from the upper to bottom area inside the sample, and the diameter of the air voids near the upper area became larger. After curing for 28 days, the compressive strength of fiber reinforced mortar reached the maximum when the content of desert sand was 50%. In conclusion, the appropriate amount of desert sand can reduce the porosity of the fiber reinforced mortar to some extent and the number of large size air voids can be significantly reduced, which improves the pore structure and the mechanical properties of the fiber reinforced mortar.
- Published
- 2021
- Full Text
- View/download PDF