1. Upcycled Graphene Oxide Nanosheets for Reversible Room Temperature NO2 Gas Sensor
- Author
-
Vien Trinh, Kai Xu, Hao Yu, Nam Ha, Yihong Hu, Muhammad Waqas Khan, Rui Ou, Yange Luan, Jiaru Zhang, Qijie Ma, Guanghui Ren, and Jian Zhen Ou
- Subjects
graphene oxide ,room temperature gas sensing ,NO2 sensor ,physisorption ,Biochemistry ,QD415-436 - Abstract
Graphene oxide (GO) nanosheets, as one of the most studied graphene derivatives, have demonstrated an intrinsically strong physisorption-based gas–matter behavior, owing to its enhanced volume–surface ratio and abundant surface functional groups. The exploration of efficient and cost-effective synthesis methods for GO is an ongoing task. In this work, we explored a novel approach to upcycle inexpensive polyethylene terephthalate (PET) plastic waste into high-quality GO using a combination of chemical and thermal treatments based on a montmorillonite template. The obtained material had a nanosheet morphology with a lateral dimension of around ~2 µm and a thickness of ~3 nm. In addition, the GO nanosheets were found to be a p-type semiconductor with a bandgap of 2.41 eV and was subsequently realized as a gas sensor. As a result, the GO sensor exhibited a fully reversible sensing response towards ultra-low-concentration NO2 gas with a limit of detection of ~1.43 ppb, without the implementation of an external excitation stimulus including elevating the operating temperature or bias voltages. When given a thorough test, the sensor maintained an impressive long-term stability and repeatability with little performance degradation after 5 days of experiments. The response factor was estimated to be ~11% when exposed to 1026 ppb NO2, which is at least one order of magnitude higher than that of other commonly seen gas species including CH4, H2, and CO2.
- Published
- 2024
- Full Text
- View/download PDF