1. Mapping a Knowledge-Based Malaria Hazard Index Related to Landscape Using Remote Sensing: Application to the Cross-Border Area between French Guiana and Brazil
- Author
-
Nadine Dessay, Aurélia Stefani, Zhichao Li, Mathieu Nacher, Frédérique Seyler, Romain Girod, Adrien Moiret, Emmanuel Roux, UMR 228 Espace-Dev, Espace pour le développement, Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM)-Université de Guyane (UG)-Université des Antilles (UA), Expertise et spatialisation des connaissances en environnement (ESPACE), Institut de Recherche pour le Développement (IRD), Unité d'entomologie médicale, Vectopôle Amazonien Emile Abonnenc [Cayenne, Guyane française], Institut Pasteur de la Guyane, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP)-Institut Pasteur de la Guyane, Réseau International des Instituts Pasteur (RIIP)-Réseau International des Instituts Pasteur (RIIP), Medicine Department, Ecosystemes Amazoniens et Pathologie Tropicale (EPat), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Guyane (UG)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Guyane (UG), Centre d'Investigation Clinique Antilles-Guyane (CIC - Antilles Guyane), Université des Antilles et de la Guyane (UAG)-Institut National de la Santé et de la Recherche Médicale (INSERM)-CHU Pointe-à-Pitre/Abymes [Guadeloupe] -CHU de Fort de France-Centre Hospitalier Andrée Rosemon [Cayenne, Guyane Française], Université de Guyane (UG)-Université des Antilles (UA)-Institut de Recherche pour le Développement (IRD)-Université de Perpignan Via Domitia (UPVD)-Avignon Université (AU)-Université de La Réunion (UR)-Université de Montpellier (UM), and CHU de Fort de France-Centre Hospitalier Andrée Rosemon [Cayenne, Guyane Française]-CHU Pointe-à-Pitre/Abymes [Guadeloupe] -Institut National de la Santé et de la Recherche Médicale (INSERM)-Université des Antilles et de la Guyane (UAG)
- Subjects
Remote sensing application ,remote sensing ,land use and land cover ,landscape metric ,knowledge-based hazard modeling ,malaria ,cross-border area between French Guiana and Brazil ,Science ,030231 tropical medicine ,Land cover ,Spearman's rank correlation coefficient ,03 medical and health sciences ,0302 clinical medicine ,Linear regression ,parasitic diseases ,medicine ,030212 general & internal medicine ,[STAT.AP]Statistics [stat]/Applications [stat.AP] ,Land use ,Hazard index ,[SHS.GEO]Humanities and Social Sciences/Geography ,medicine.disease ,Spatialization ,3. Good health ,Geography ,General Earth and Planetary Sciences ,[SDV.SPEE]Life Sciences [q-bio]/Santé publique et épidémiologie ,Cartography ,Malaria - Abstract
International audience; Malaria remains one of the most common vector-borne diseases in the world and the definition of novel control strategies can benefit from the modeling of transmission processes. However, data-driven models are often difficult to build, as data are very often incomplete, heterogeneous in nature and in quality, and/or biased. In this context, a knowledge-based approach is proposed to build a robust and general landscape-based hazard index for malaria transmission that is tailored to the Amazonian region. A partial knowledge-based model of the risk of malaria transmission in the Amazonian region, based on landscape features and extracted from a systematic literature review, was used. Spatialization of the model was obtained by generating land use and land cover maps of the cross-border area between French Guiana and Brazil, followed by computing and combining landscape metrics to build a set of normalized landscape-based hazard indices. An empirical selection of the best index was performed by comparing the indices in terms of adequacy with the knowledge-based model, intelligibility and correlation with P. falciparum incidence rates. The selected index is easy to interpret and successfully represents the current knowledge about the role played by landscape patterns in malaria transmission within the study area. It was significantly associated with P. falciparum incidence rates, using the Pearson and Spearman correlation coefficients (up to 0.79 and 0.75, respectively; p-value < 0.001), and the linear regression coefficient of determination (reaching 0.63; p-values < 0.001). This study establishes a spatial knowledge-driven, landscape-based hazard malaria index using remote sensing that can be easily produced on a regular basis and might be useful for malaria prediction, surveillance, and control. Keywords: remote sensing; land use and land cover; landscape metric; knowledge-based hazard modeling; malaria; cross-border area between French Guiana and Brazil
- Published
- 2016