1. Calsarcin-2 May Play a Compensatory Role in the Development of Obese Sarcopenia
- Author
-
Yu-Cheng Liang, Kai-Pi Cheng, Hsin-Yu Kuo, Chung-Teng Wang, Hsuan-Wen Chou, Kuan-Lin Huang, Hung-Tsung Wu, and Horng-Yih Ou
- Subjects
calsarcin-2 ,high-fat diet ,myoblast differentiation ,myocyte ,sarcopenia ,Biology (General) ,QH301-705.5 - Abstract
Although obese sarcopenia is a major public health problem with increasing prevalence worldwide, the factors that contribute to the development of obese sarcopenia are still obscure. In order to clarify this issue, a high-fat-diet-induced obese sarcopenia mouse model was utilized. After being fed with a high-fat diet for 24 weeks, decreased motor functions and muscle mass ratios were found in the C57BL/6 mice. In addition, the expression of calsarcin-2 was significantly increased in their skeletal muscle, which was determined by a microarray analysis. In order to clarify the role of calsarcin-2 in muscle, lentiviral vectors containing the calsarcin-2 gene or short hairpin RNA targeted to calsarcin-2 were used to manipulate calsarcin-2 expressions in L6 myoblasts. We found that an overexpression of calsarcin-2 facilitated L6 myoblast differentiation, whereas a calsarcin-2 knockdown delayed myoblast differentiation, as determined by the expression of myogenin. However, the calsarcin-2 knockdown showed no significant effects on myoblast proliferation. In addition, to clarify the relationship between serum calsarcin-2 and sarcopenia, the bilateral gastrocnemius muscle mass per body weight in mice and appendicular skeletal muscle mass index in humans were measured. Although calsarcin-2 facilitated myoblast differentiation, the serum calsarcin-2 concentration was negatively related to skeletal muscle mass index in mice and human subjects. Taken together, calsarcin-2 might facilitate myoblast differentiation and appear to play a compensatory role in sarcopenia.
- Published
- 2023
- Full Text
- View/download PDF