1. Utilization of Foamed Glass as an Effective Adsorbent for Methylene Blue: Insights into Physicochemical Properties and Theoretical Treatment
- Author
-
Hussein Al-kroom, Hamdy A. Abdel-Gawwad, Mohamed Abd Elrahman, Saleh Abdel-Aleem, Mohamed Saad Ahmed, Yasser F. Salama, Saleh Qaysi, Mateusz Techman, Moaaz K. Seliem, and Osama Youssf
- Subjects
glass waste ,foamed glass ,alkali activation ,porous structure ,basic dyes ,statistical modeling ,Technology ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Microscopy ,QH201-278.5 ,Descriptive and experimental mechanics ,QC120-168.85 - Abstract
This study reports a potential approach for the valorization of glass waste (GW) that is mainly composed of amorphous silica to prepare lightweight foamed glass (FG). The preparation of FG was achieved by mixing sodium hydroxide with GW powder followed by sintering at a temperature of 800 °C. As-synthesized FG was characterized and applied as an effective adsorbent for the removal of hazardous organic water contaminants, in particular, methylene blue (MB) dye. FG exhibited porosity of 91%, bulk density of 0.65 g/cm3, compressive strength of 4 MPa, and thermal conductivity of 0.27 W/m·K. Theoretical treatment indicated that a monolayer model with one energy site was the best in fitting the removal of MB molecules. The number of MB molecules per active site (n) ranged from 2.20 to 1.70, suggesting vertical orientation and a multi-molecular adsorption mechanism. The density of FG receptor sites (DM) increased with the temperature, and this parameter played a vital role in the adsorption process. The adsorption capacity (Qsat) increased from 255.11 to 305.58 mg/g, which signifies endothermic interactions. MB adsorption on FG was controlled by physical forces such as electrostatic interactions (i.e., the adsorption energies were
- Published
- 2023
- Full Text
- View/download PDF