1. Systems Biology: New Insight into Antibiotic Resistance
- Author
-
Francine Piubeli and Universidad de Sevilla. Departamento de Microbiología y Parasitología
- Subjects
Microbiology (medical) ,antibiotic resistance ,system biology ,Virology ,genome-scale metabolic models ,mathematical models ,Microbiology ,omics approches - Abstract
Over the past few decades, antimicrobial resistance (AMR) has emerged as an important threat to public health, resulting from the global propagation of multidrug-resistant strains of various bacterial species. Knowledge of the intrinsic factors leading to this resistance is necessary to overcome these new strains. This has contributed to the increased use of omics technologies and their extrapolation to the system level. Understanding the mechanisms involved in antimicrobial resistance acquired by microorganisms at the system level is essential to obtain answers and explore options to combat this resistance. Therefore, the use of robust whole-genome sequencing approaches and other omics techniques such as transcriptomics, proteomics, and metabolomics provide fundamental insights into the physiology of antimicrobial resistance. To improve the efficiency of data obtained through omics approaches, and thus gain a predictive understanding of bacterial responses to antibiotics, the integration of mathematical models with genome-scale metabolic models (GEMs) is essential. In this context, here we outline recent efforts that have demonstrated that the use of omics technology and systems biology, as quantitative and robust hypothesis-generating frameworks, can improve the understanding of antibiotic resistance, and it is hoped that this emerging field can provide support for these new efforts.
- Published
- 2022
- Full Text
- View/download PDF