1. Creation of a Corneal Flap for Laser In Situ Keratomileusis Using a Three-Dimensional Femtosecond Laser Cut: Clinical and Optical Coherence Tomography Features
- Author
-
Antonio Leccisotti, Stefania V. Fields, Giuseppe De Bartolo, Christian Crudale, and Matteo Posarelli
- Subjects
femtosecond laser ,optical coherence tomography ,laser in situ keratomileusis ,Optics. Light ,QC350-467 ,Applied optics. Photonics ,TA1501-1820 - Abstract
Laser in situ keratomileusis (LASIK) is the most frequently used technique for the surgical correction of refractive errors on the cornea. It entails the creation of a superficial hinged corneal flap using a femtosecond laser, ablation of the underlying stromal bed using an excimer laser, and repositioning of the flap. A corneal flap with an angled side cut reduces the risk of flap dislocation and infiltration of epithelial cells and confers unique biomechanical properties to the cornea. A new laser software creating three-dimensional (3D) flaps using a custom angle side cut was retrospectively evaluated, comparing optical coherence tomography 3D (with intended 90° side cut) and 2D flaps (with tapered side cuts) as well as respective intra- and early postoperative complications. Four hundred consecutive eyes were included, two hundred for each group. In the 3D group, the mean edge angle was 92°, and the procedure was on average 5.2 s slower (p = 0). Non-visually significant flap folds were found in thirteen eyes of the 2D group and in seven eyes of the 3D group (p = 0.17). In conclusion, the creation of a LASIK flap using a 3D femtosecond laser cut, although slightly slower, was safe and effective. The side cut angle was predictable and accurate.
- Published
- 2024
- Full Text
- View/download PDF