1. Towards Outdoor Electromagnetic Field Exposure Mapping Generation Using Conditional GANs
- Author
-
Mohammed Mallik, Angesom Ataklity Tesfay, Benjamin Allaert, Redha Kassi, Esteban Egea-Lopez, Jose-Maria Molina-Garcia-Pardo, Joe Wiart, Davy P. Gaillot, Laurent Clavier, Télécommunication, Interférences et Compatibilité Electromagnétique - IEMN (TELICE - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Institut de Recherche sur les Composants logiciels et matériels pour l'Information et la Communication Avancé - USR 3380 (IRCICA), Université de Lille-Centre National de la Recherche Scientifique (CNRS), Centre for Digital Systems (CERI SN - IMT Nord Europe), Ecole nationale supérieure Mines-Télécom Lille Douai (IMT Nord Europe), Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT), Institut Mines-Télécom [Paris] (IMT), Plateforme de Caractérisation Multi-Physiques - IEMN (PCMP - IEMN), Universidad Politécnica de Cartagena / Technical University of Cartagena (UPCT), Chaire Modélisation, Caractérisation et Maîtrise des expositions aux ondes électromagnétiques (C2M), Télécom ParisTech-IMT Atlantique (IMT Atlantique), Institut Polytechnique de Paris (IP Paris), Département Communications & Electronique (COMELEC), Télécom ParisTech, Radio-Fréquences Microondes et Ondes Millimétriques (RFM2), Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris-Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Circuits Systèmes Applications des Micro-ondes - IEMN (CSAM - IEMN ), The French government’s Beyond5G initiative, which was sponsored as a component of the country’s future investment program and strategy for economic recovery, provided partial funding for this project. The COST action CA20120 INTERACT is another funding source for this project. This work has also been partially funded by Grants PID2020-112675RB-C41 and PID2019-107885GB-C33 by MCIN/AEI/10.13039/501100011033.This research work is done at IRCICA, UAR CNRS 3380, Lille. Special Thanks to Métropole Européenne de Lille (MEL) for supporting this Ph.D. project., PCMP SigmaCom, and COST
- Subjects
conditional generative adversarial network ,[SPI.ELEC]Engineering Sciences [physics]/Electromagnetism ,[INFO.INFO-NI]Computer Science [cs]/Networking and Internet Architecture [cs.NI] ,EMF exposure ,Electrical and Electronic Engineering ,engineering_other ,Biochemistry ,Instrumentation ,optimization ,Atomic and Molecular Physics, and Optics ,Analytical Chemistry - Abstract
With the ongoing fifth-generation cellular network (5G) deployment, electromagnetic field exposure has become a critical concern. However, measurements are scarce, and accurate electromagnetic field reconstruction in a geographic region remains challenging. This work proposes a conditional Generative Adversarial Network to address this issue. The main objective is to reconstruct the electromagnetic field exposure map accurately according to the environment’s topology from a few sensors located in an outdoor urban environment. The model is trained to learn and estimate the propagation characteristics of the electromagnetic field according to the topology of a given environment. In addition, the conditional Generative Adversarial Network based electromagnetic field mapping is compared with simple kriging. Results show that the proposed method produces accurate estimates and is a promising solution for exposure map reconstruction.
- Published
- 2022
- Full Text
- View/download PDF