1. Metabolic Profiling and Comparative Proteomic Insight in Respect of Amidases during Iprodione Biodegradation
- Author
-
Pamela Donoso-Piñol, Gabriela Briceño, Joseph A. M. Evaristo, Fábio C. S. Nogueira, Barbara Leiva, Claudio Lamilla, Heidi Schalchli, and María Cristina Diez
- Subjects
pesticide degradation ,amidase ,proteome ,pesticide-tolerant bacteria ,Biology (General) ,QH301-705.5 - Abstract
The fungicide iprodione (IPR) (3-(3,5-dichlorophenyl) N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide) is a highly toxic compound. Although IPR has been restricted, it is still being applied in many places around the world, constituting an environmental risk. The biodegradation of IPR is an attractive option for reducing its residues. In this study, we isolated thirteen IPR-tolerant bacteria from a biopurification system designed to treat pesticides. A study of biodegradation using different strains was comparatively evaluated, and the best degradation rate of IPR was presented by Achromobacter sp. C1 with a half-life (T1/2) of 9 days. Based on a nano-LC-MS/MS analysis for the strains, proteins solely expressed in the IPR treatment were identified by highlighting the strain Achromobacter sp. C1, with 445 proteins primarily involved in the biosynthesis of secondary metabolites and microbial metabolism in diverse environments. Differentially expressed protein amidases were involved in six metabolic pathways. Interestingly, formamidase was inhibited while other cyclases, i.e., amidase and mandelamide hydrolase, were overexpressed, thereby minimizing the effect of IPR on the metabolism of strain C1. The dynamic changes in the protein profiles of bacteria that degrade IPR have been poorly studied; therefore, our results offer new insight into the metabolism of IPR-degrading microorganisms, with special attention paid to amidases.
- Published
- 2023
- Full Text
- View/download PDF