1. Advancements in Microfluidic Platforms for Glioblastoma Research
- Author
-
Rachana Raman, Vijendra Prabhu, Praveen Kumar, and Naresh Kumar Mani
- Subjects
microfluidic chips ,cancer stem cells ,tumor microenvironment ,biomarkers ,bioprinting ,circulating tumor cells ,Chemistry ,QD1-999 - Abstract
Glioblastoma (GBM) is a malignant cancer affecting the brain. As per the WHO classifications, it is a grade IV glioma and is characterized by heterogenous histopathology, high recurrence rates, and a high median age of diagnosis. Most individuals diagnosed with GBM are aged between 50 and 64 years, and the prognosis is often poor. Untreated GBM patients have a median survival of 3 months, while treatments with Temozolomide (TMZ) and radiotherapy can improve the survival to 10–14 months. Tumor recurrence is common, owing to the inefficiency of surgical resection in removing microscopic tumor formations in the brain. A crucial component of GBM-related research is understanding the tumor microenvironment (TME) and its characteristics. The various cellular interactions in the TME contribute to the higher occurrence of malignancy, resistance to treatments, and difficulty in tumor resection and preventative care. Incomplete pictures of the TME have been obtained in 2D cultures, which fail to incorporate the ECM and other crucial components. Identifying the hallmarks of the TME and developing ex vivo and in vitro models can help study patient-specific symptoms, assess challenges, and develop courses of treatment in a timely manner which is more efficient than the current methods. Microfluidic models, which incorporate 3D cultures and co-culture models with various channel patterns, are capable of stimulating tumor conditions accurately and provide better responses to therapeutics as would be seen in the patient. This facilitates a more refined understanding of the potential treatment delivery systems, resistance mechanisms, and metastatic pathways. This review collates information on the application of such microfluidics-based systems to analyze the GBM TME and highlights the use of such systems in improving patient care and treatment options.
- Published
- 2024
- Full Text
- View/download PDF