1. Dynamic Analysis of Upper- and Lower-Extremity Performance During Take-Offs and Landings in High-Wall Climbing: Effects of a Plyometric and Strength Training Intervention
- Author
-
Wen-Lung Shih, Ming-Lang Yeh, Ming-Hsi Chuang, and Cheng-En Wu
- Subjects
climbing high wall ,plyometric and strength training ,ground reaction force ,ballistic push-ups ,dynamic analysis ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
This study used a 12-week plyometric and strength training program as an intervention to improve upper- and lower-extremity muscle strength for jumping and landing when climbing high walls. Sixty general non-athlete male college students were openly recruited and divided into an experimental group and a control group. The experimental group underwent a plyometric and strength training program twice a week for 12 weeks (24 sessions). The intervention was divided into three phases, each lasting four weeks, with the training intensity gradually increasing in each phase. A hand grip dynamometer was used to measure grip strength, and a PASCO double-track force plate was used to assess upper-extremity push-up force and lower-extremity take-off and landing strength. The results of the 12-week intervention showed that the experimental group experienced significant increases in grip strength (both hands), hand-ground reaction force, and upper-extremity hang time. Additionally, the time of upper-extremity action on the force plate decreased. Lower-extremity take-off strength improved, as reflected in increased ground reaction force, rate of force development, and passage time. Upon landing, ground reaction force decreased by 3.2%, and cushioning time shortened by 52.7%. This study concludes that plyometric and strength training have promising effects in enhancing upper- and lower-extremity strength, particularly in climbing and landing tasks.
- Published
- 2024
- Full Text
- View/download PDF