1. VOCs Concentration, SOA Formation Contribution and Festival Effects during Heavy Haze Event: A Case Study in Zhengzhou, Central China
- Author
-
Shijie Yu, Chaofang Xue, Fuwen Deng, Qixiang Xu, and Bingnan Zhao
- Subjects
volatile organic compounds (VOCs) ,heavy haze ,source apportionment ,secondary organic aerosols potential (SOAp) ,Chinese New Year (CNY) festival effects ,Meteorology. Climatology ,QC851-999 - Abstract
In this study, online ambient volatile organic compounds (VOCs) were collected at an urban site of Zhengzhou in Central China during February 2018. The VOCs characteristics, source contributions and the Chinese New Year (CNY) effects have been investigated. During the sampling period, three haze periods have been identified, with the corresponding VOCs concentrations of (92 ± 45) ppbv, (62 ± 18) ppbv and (83 ± 34) ppbv; in contrast, the concentration during non-haze days was found to be (57 ± 27) ppbv. In addition, the festival effects of the CNY were investigated, and the concentration of particulate matter precursor decreased significantly. Meanwhile, firework-displaying events were identified, as the emission intensity had been greatly changed. Both potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) models results indicated that short-distance transportation was the main influencing factor of the local VOCs pollution, especially by transport from the northeast. Source contribution results by the positive matrix factorization (PMF) model showed that vehicle exhaust (24%), liquid petroleum gas and natural gas (LPG/NG, 23%), coal combustion (21%), industrial processes (16%) and solvent usages (16%) were the major sources of ambient VOCs. Although industry and solvents have low contribution to the total VOCs, their secondary organic aerosol (SOA) contribution were found to be relatively high, especially in haze-1 and haze-3 periods. The haze-2 period had the lowest secondary organic aerosol potential (SOAp) during the sampling period; this is mainly caused by the reduction of industrial and solvent emissions due to CNY.
- Published
- 2024
- Full Text
- View/download PDF