1. The Assessment of the Influence of Low-Frequency Electromagnetic Fields Originated from the Power Infrastructure on Humans’ Health
- Author
-
Leszek Sławomir Litzbarski, Marek Olesz, Grzegorz Redlarski, Piotr Mateusz Tojza, Arkadiusz Żak, Emanuel Gifuni, Zuzanna Cieślikowska, and Mieszko Czapliński
- Subjects
electromagnetic field ,health hazards ,power infrastructure ,electric power distribution ,electromagnetic compatibility ,Technology ,Engineering (General). Civil engineering (General) ,TA1-2040 ,Biology (General) ,QH301-705.5 ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
The objective of this study is to assess the impact of low-frequency electromagnetic fields (LF EMFs) generated by power infrastructure on the nearby environment. Measurements of electric (E) and magnetic (H) field intensities were conducted around high-voltage power lines, transformer stations and facilities related to them. Numerical simulations were also performed to model the distribution of the field values around real buildings in close proximity to power delivery systems. Given the ongoing scientific debate regarding the effects of EMFs on living organisms, the current analysis was based on the existing standards—particularly ICNIRP 2010 guidelines, which set the maximum allowable E and magnetic induction (B) values at 5 kV/m and 200 μT, respectively. Stricter national regulations were also examined, such as Poland’s 1 kV/m E limit in residential areas and Belgium’s 10 μT limit for B. The results showed that while most cases complied with ICNIRP 2010 standards, certain stricter local regulations were exceeded. Specifically, 9 of 14 cases exceeded Poland’s E limits, and 8 failed to meet Belgium’s B requirements. Only in one place—a warehouse near 110 kV power lines (in a critical case)—the ICNIRP limit B was exceeded. These findings underscore the variability in regulatory standards and highlight the need for localized assessments of EMF exposure.
- Published
- 2024
- Full Text
- View/download PDF