1. The Impact of Glacial Shrinkage on Future Streamflow in the Urumqi River Source Region of Eastern Tien Shan, Central Asia.
- Author
-
Zhao, Weibo, Li, Zhongqin, Li, Hongliang, Xu, Chunhai, Mu, Jianxin, and Yang, Yefei
- Subjects
- *
WATER management , *GLOBAL warming , *CLIMATE change models , *CLIMATE change , *WATER supply , *GLACIERS - Abstract
Understanding changes in runoff due to climate variations in glacier-dominated headwaters is key to managing water resources and dryland watersheds effectively and rationally. The continuous glacier shrinkage caused by climate warming has significantly impacted the water supply and ecological systems in the vast arid regions of Central Asia, attracting extensive public concern. The study results indicate an increase in total runoff at the Urumqi River source region during both the baseline (1997–2016) and mid-century (2040–2059) periods, encompassing rain, glacier meltwater, and snowmelt components. Compared to the baseline period, the temperature increases by the mid-century under the three climate scenarios (SSP1−26, SSP2−45, and SSP5−85) range from 0.98 to 1.48 °C. In this region, during the period from 1997 to 2016, glacier meltwater was the dominant component of runoff, comprising 42.10–43.79% of the total, followed by snowmelt at 29.64–30.40% and rainfall contributions of 26.56–27.49%. Additionally, glacier storage in this typical catchment responds quickly to temperature fluctuations, significantly impacting runoff. The Urumqi River source region's runoff exhibits heightened sensitivity to these temperature shifts compared to precipitation effects. We hypothesized three glacier coverage scenarios: unchanged at 100% glaciation, reduced by half to 50%, and fully retreated to 0% glaciation. Analysis of these scenarios demonstrated that glaciers are pivotal in runoff formation. Under the SSP1−26, SSP2−45, and SSP5−85 climate scenarios, glaciers contributed additional runoff increases of 51.61%, 57.64%, and 62.07%, respectively. Generally, glaciers play a critical role in supplying water in dry areas. Thus, accurately forecasting future water resource shifts in high-altitude glacier regions is crucial for downstream water resource management and utilization. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF