4 results on '"Tavakol S"'
Search Results
2. Curcumin Delivery Mediated by Bio-Based Nanoparticles: A Review.
- Author
-
Moballegh Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, Khanbabaei H, Ashrafizadeh M, Mohammadinejad R, Tavakol S, and Sethi G
- Subjects
- Animals, Drug Carriers chemistry, Drug Delivery Systems methods, Humans, Polyphenols chemistry, Curcumin administration & dosage, Curcumin chemistry, Nanoparticles chemistry
- Abstract
Todays, nano-pharmaceutics is emerging as an important field of science to develop and improve efficacy of different drugs. Although nutraceuticals are currently being utilized in the prevention and treatment of various chronic diseases such as cancers, a number of them have displayed issues associated with their solubility, bioavailability, and bio-degradability. In the present review, we focus on curcumin, an important and widely used polyphenol, with diverse pharmacological activities such as anti-inflammatory, anti-carcinogenic, anti-viral, etc. Notwithstanding, it also exhibits poor solubility and bioavailability that may compromise its clinical application to a great extent. Therefore, the manipulation and encapsulation of curcumin into a nanocarrier formulation can overcome these major drawbacks and potentially may lead to a far superior therapeutic efficacy. Among different types of nanocarriers, biological and biopolymer carriers have attracted a significant attention due to their pleiotropic features. Thus, in the present review, the potential protective and therapeutic applications of curcumin, as well as different types of bio-nanocarriers, which can be used to deliver curcumin effectively to the different target sites will be discussed., Competing Interests: The author report no potential conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
3. A Cell-Free SDKP-Conjugated Self-Assembling Peptide Hydrogel Sufficient for Improvement of Myocardial Infarction.
- Author
-
Firoozi S, Pahlavan S, Ghanian MH, Rabbani S, Tavakol S, Barekat M, Yakhkeshi S, Mahmoudi E, Soleymani M, and Baharvand H
- Subjects
- Animals, Biocompatible Materials pharmacology, Bone Marrow Cells cytology, Cell-Free System, Chick Embryo, Inflammation, Male, Mesenchymal Stem Cell Transplantation, Mesenchymal Stem Cells cytology, Mice, Myocytes, Cardiac cytology, Neovascularization, Physiologic, Rats, Rats, Sprague-Dawley, Stroke Volume drug effects, Vascular Endothelial Growth Factor A metabolism, Ventricular Function, Left drug effects, Hydrogels chemistry, Myocardial Infarction drug therapy, Peptides chemistry
- Abstract
Biomaterials in conjunction with stem cell therapy have recently attracted attention as a new therapeutic approach for myocardial infarction (MI), with the aim to solve the delivery challenges that exist with transplanted cells. Self-assembling peptide (SAP) hydrogels comprise a promising class of synthetic biomaterials with cardiac-compatible properties such as mild gelation, injectability, rehealing ability, and potential for sequence modification. Herein, we developed an SAP hydrogel composed of a self-assembling gel-forming core sequence (RADA) modified with SDKP motif with pro-angiogenic and anti-fibrotic activity to be used as a cardioprotective scaffold. The RADA-SDKP hydrogel was intramyocardially injected into the infarct border zone of a rat model of MI induced by left anterior descending artery (LAD) ligation as a cell-free or a cell-delivering scaffold for bone marrow mesenchymal stem cells (BM-MSCs). The left ventricular ejection fraction (LVEF) was markedly improved after transplantation of either free hydrogel or cell-laden hydrogel. This cardiac functional repair coincided very well with substantially lower fibrotic tissue formation, expanded microvasculature, and lower inflammatory response in the infarct area. Interestingly, BM-MSCs alone or in combination with hydrogel could not surpass the cardiac repair effects of the SDKP-modified SAP hydrogel. Taken together, we suggest that the RADA-SDKP hydrogel can be a promising cell-free construct that has the capability for functional restoration in the instances of acute myocardial infarction (AMI) that might minimize the safety concerns of cardiac cell therapy and facilitate clinical extrapolation., Competing Interests: The authors declare no conflict of interest.
- Published
- 2020
- Full Text
- View/download PDF
4. Autophagy Modulators: Mechanistic Aspects and Drug Delivery Systems.
- Author
-
Tavakol S, Ashrafizadeh M, Deng S, Azarian M, Abdoli A, Motavaf M, Poormoghadam D, Khanbabaei H, Afshar EG, Mandegary A, Pardakhty A, Yap CT, Mohammadinejad R, and Kumar AP
- Subjects
- Animals, Cell Proliferation drug effects, Humans, Neoplasms metabolism, Neoplasms pathology, Signal Transduction drug effects, Antineoplastic Agents pharmacology, Autophagy drug effects, Drug Delivery Systems, Neoplasms drug therapy
- Abstract
Autophagy modulation is considered to be a promising programmed cell death mechanism to prevent and cure a great number of disorders and diseases. The crucial step in designing an effective therapeutic approach is to understand the correct and accurate causes of diseases and to understand whether autophagy plays a cytoprotective or cytotoxic/cytostatic role in the progression and prevention of disease. This knowledge will help scientists find approaches to manipulate tumor and pathologic cells in order to enhance cellular sensitivity to therapeutics and treat them. Although some conventional therapeutics suffer from poor solubility, bioavailability and controlled release mechanisms, it appears that novel nanoplatforms overcome these obstacles and have led to the design of a theranostic-controlled drug release system with high solubility and active targeting and stimuli-responsive potentials. In this review, we discuss autophagy modulators-related signaling pathways and some of the drug delivery strategies that have been applied to the field of therapeutic application of autophagy modulators. Moreover, we describe how therapeutics will target various steps of the autophagic machinery. Furthermore, nano drug delivery platforms for autophagy targeting and co-delivery of autophagy modulators with chemotherapeutics/siRNA, are also discussed., Competing Interests: The authors declare no conflict of interest.
- Published
- 2019
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.