1. Cyclic Learning-Based Lightweight Network for Inverse Tone Mapping.
- Author
-
Park, Jiyun and Song, Byung Cheol
- Subjects
MNEMONICS ,HIGH dynamic range imaging - Abstract
Recent studies on inverse tone mapping (iTM) have moved toward indirect mapping, which generates a stack of low dynamic range (LDR) images with multiple exposure values (multi-EV stack) and then merges them. In order to generate multi-EV stack(s), several large-scale networks with more than 20 M parameters have been proposed, but their high dynamic range (HDR) reconstruction and multi-EV stack generation performance were not acceptable. Also, some previous methods using cycle consistency should even have trained additional networks that are not used for multi-EV stack generation, which results in large memory for training. Thus, this paper proposes novel cyclic learning based on cycle consistency to reduce the memory burden in training. In detail, we eliminated networks used only for training, so the proposed method enables efficient learning in terms of training-purpose memory. In addition, this paper presents a lightweight iTM network that dramatically reduces the network sizes of the existing networks. Actually, the proposed lightweight network requires only a small parameter size of 1/100 compared to the state-of-the-art (SOTA) method. The lightweight network contributes to the practical use of iTM. Therefore, the proposed method based on a lightweight network reliably generates a multi-EV stack. Experimental results show that the proposed method achieves quantitatively SOTA performance and is qualitatively comparable to conventional indirect iTM methods. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF