22 results on '"Oh, Ki-Kwang"'
Search Results
2. Uncovering key pathways of Lentinula edodes against cancer via network pharmacology
- Author
-
Cho, Dong Ha, primary, Oh, Ki Kwang, additional, and Adnan, Md., additional
- Published
- 2021
- Full Text
- View/download PDF
3. Elucidation of significant pathways of Korean Thistle (Cirsium japonicum var. maackii (Maxim.) Matsum.) flower against cancer through network pharmacology
- Author
-
Cho, Dong Ha, primary, Oh, Ki Kwang, additional, and Adnan, Md., additional
- Published
- 2021
- Full Text
- View/download PDF
4. Elucidation of Prebiotics, Probiotics, Postbiotics, and Target from Gut Microbiota to Alleviate Obesity via Network Pharmacology Study.
- Author
-
Oh, Ki-Kwang, Gupta, Haripriya, Min, Byeong-Hyun, Ganesan, Raja, Sharma, Satya Priya, Won, Sung-Min, Jeong, Jin-Ju, Lee, Su-Been, Cha, Min-Gi, Kwon, Goo-Hyun, Jeong, Min-Kyo, Hyun, Ji-Ye, Eom, Jung-A, Park, Hee-Jin, Yoon, Sang-Jun, Choi, Mi-Ran, Kim, Dong Joon, and Suk, Ki-Tae
- Subjects
- *
GUT microbiome , *PROBIOTICS , *PREBIOTICS , *TRIMETHYLAMINE oxide , *PHARMACOLOGY - Abstract
The metabolites produced by the gut microbiota have been reported as crucial agents against obesity; however, their key targets have not been revealed completely in complex microbiome systems. Hence, the aim of this study was to decipher promising prebiotics, probiotics, postbiotics, and more importantly, key target(s) via a network pharmacology approach. First, we retrieved the metabolites related to gut microbes from the gutMGene database. Then, we performed a meta-analysis to identify metabolite-related targets via the similarity ensemble approach (SEA) and SwissTargetPrediction (STP), and obesity-related targets were identified by DisGeNET and OMIM databases. After selecting the overlapping targets, we adopted topological analysis to identify core targets against obesity. Furthermore, we employed the integrated networks to microbiota–substrate–metabolite–target (MSMT) via R Package. Finally, we performed a molecular docking test (MDT) to verify the binding affinity between metabolite(s) and target(s) with the Autodock 1.5.6 tool. Based on holistic viewpoints, we performed a filtering step to discover the core targets through topological analysis. Then, we implemented protein–protein interaction (PPI) networks with 342 overlapping target, another subnetwork was constructed with the top 30% degree centrality (DC), and the final core networks were obtained after screening the top 30% betweenness centrality (BC). The final core targets were IL6, AKT1, and ALB. We showed that the three core targets interacted with three other components via the MSMT network in alleviating obesity, i.e., four microbiota, two substrates, and six metabolites. The MDT confirmed that equol (postbiotics) converted from isoflavone (prebiotics) via Lactobacillus paracasei JS1 (probiotics) can bind the most stably on IL6 (target) compared with the other four metabolites (3-indolepropionic acid, trimethylamine oxide, butyrate, and acetate). In this study, we demonstrated that the promising substate (prebiotics), microbe (probiotics), metabolite (postbiotics), and target are suitable for obsesity treatment, providing a microbiome basis for further research. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
5. Food and Gut Microbiota-Derived Metabolites in Nonalcoholic Fatty Liver Disease.
- Author
-
Jeong, Min Kyo, Min, Byeong Hyun, Choi, Ye Rin, Hyun, Ji Ye, Park, Hee Jin, Eom, Jung A, Won, Sung Min, Jeong, Jin Ju, Oh, Ki Kwang, Gupta, Haripriya, Ganesan, Raja, Sharma, Satya Priya, Yoon, Sang Jun, Choi, Mi Ran, Kim, Dong Joon, and Suk, Ki Tae
- Subjects
NON-alcoholic fatty liver disease ,SHORT-chain fatty acids ,METABOLITES ,NON-alcoholic beverages - Abstract
Diet and lifestyle are crucial factors that influence the susceptibility of humans to nonalcoholic fatty liver disease (NAFLD). Personalized diet patterns chronically affect the composition and activity of microbiota in the human gut; consequently, nutrition-related dysbiosis exacerbates NAFLD via the gut–liver axis. Recent advances in diagnostic technology for gut microbes and microbiota-derived metabolites have led to advances in the diagnosis, treatment, and prognosis of NAFLD. Microbiota-derived metabolites, including tryptophan, short-chain fatty acid, fat, fructose, or bile acid, regulate the pathophysiology of NAFLD. The microbiota metabolize nutrients, and metabolites are closely related to the development of NAFLD. In this review, we discuss the influence of nutrients, gut microbes, their corresponding metabolites, and metabolism in the pathogenesis of NAFLD. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
6. The Link between Gut Microbiota and Hepatic Encephalopathy.
- Author
-
Won, Sung-Min, Oh, Ki Kwang, Gupta, Haripriya, Ganesan, Raja, Sharma, Satya Priya, Jeong, Jin-Ju, Yoon, Sang Jun, Jeong, Min Kyo, Min, Byeong Hyun, Hyun, Ji Ye, Park, Hee Jin, Eom, Jung A., Lee, Su Been, Cha, Min Gi, Kwon, Goo Hyun, Choi, Mi Ran, Kim, Dong Joon, and Suk, Ki Tae
- Subjects
- *
HEPATIC encephalopathy , *GUT microbiome , *PREBIOTICS , *PROBIOTICS , *FECAL microbiota transplantation , *RIFAXIMIN , *DYSBIOSIS - Abstract
Hepatic encephalopathy (HE) is a serious complication of cirrhosis that causes neuropsychiatric problems, such as cognitive dysfunction and movement disorders. The link between the microbiota and the host plays a key role in the pathogenesis of HE. The link between the gut microbiome and disease can be positively utilized not only in the diagnosis area of HE but also in the treatment area. Probiotics and prebiotics aim to resolve gut dysbiosis and increase beneficial microbial taxa, while fecal microbiota transplantation aims to address gut dysbiosis through transplantation (FMT) of the gut microbiome from healthy donors. Antibiotics, such as rifaximin, aim to improve cognitive function and hyperammonemia by targeting harmful taxa. Current treatment regimens for HE have achieved some success in treatment by targeting the gut microbiota, however, are still accompanied by limitations and problems. A focused approach should be placed on the establishment of personalized trial designs and therapies for the improvement of future care. This narrative review identifies factors negatively influencing the gut–hepatic–brain axis leading to HE in cirrhosis and explores their relationship with the gut microbiome. We also focused on the evaluation of reported clinical studies on the management and improvement of HE patients with a particular focus on microbiome-targeted therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
7. Potential non-steroidal anti-inflammatory drugs (NSAIDs) and novel mechanism insights against COVID-19 through network pharmacology
- Author
-
Cho, Dong Ha, primary, Oh, Ki Kwang, additional, and Adnan, Md., additional
- Published
- 2020
- Full Text
- View/download PDF
8. Uncovering a Hub Signaling Pathway of Antimicrobial-Antifungal-Anticancer Peptides' Axis on Short Cationic Peptides via Network Pharmacology Study.
- Author
-
Oh, Ki-Kwang, Adnan, Md., and Cho, Dong-Ha
- Subjects
- *
CELLULAR signal transduction , *AMINO acid residues , *PEPTIDES , *NOTCH signaling pathway , *ANTIMICROBIAL peptides - Abstract
Short cationic peptides (SCPs) with therapeutic efficacy of antimicrobial peptides (AMPs), antifungal peptides (AFPs), and anticancer peptides (ACPs) are known as an enhancement of the host defense system. Here, we investigated the uppermost peptide(s), hub signaling pathway(s), and their associated target(s) through network pharmacology. Firstly, we selected SCPs with positive amino acid residues on N- and C- terminals under 500 Dalton via RStudio. Secondly, the overlapping targets between the bacteria-responsive targets (TTD and OMIM) and AMPs' targets were visualized by VENNY 2.1. Thirdly, the overlapping targets between AFPs' targets and fungal-responsive targets were exhibited by VENNY 2.1. Fourthly, the overlapping targets between cancer-related targets (TTD and OMIM) and fungal-responsive targets were displayed by VENNY 2.1. Finally, a molecular docking study (MDS) was carried out to discover the most potent peptides on a hub signaling pathway. A total of 1833 SCPs were identified, and AMPs', AFPs', and ACPs' filtration suggested that 197 peptides (30 targets), 81 peptides (6 targets), and 59 peptides (4 targets) were connected, respectively. The AMPs―AFPs―ACPs' axis indicated that 27 peptides (2 targets) were associated. Each hub signaling pathway for the enhancement of the host defense system was "Inactivation of Rap1 signaling pathway on AMPs", "Activation of Notch signaling pathway on AMPs―AFPs' axis", and "Inactivation of HIF-1 signaling pathway on AMPs―AFPs―ACPs' axis". The most potent peptides were assessed via MDS; finally, HPIK on STAT3 and HVTK on NOS2 and on HIF-1 signaling pathway were the most stable complexes. Furthermore, the two peptides had better affinity scores than standard inhibitors (Stattic, 1400 W). Overall, the most potent SCPs for the human defense system were HPIK on STAT3 and HVTK on NOS2, which might inactivate the HIF-1 signaling pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
9. Microwave-Assisted Synchronous Nanogold Synthesis Reinforced by Kenaf Seed and Decoding Their Biocompatibility and Anticancer Activity.
- Author
-
Adnan, Md., Oh, Ki-Kwang, Husen, Azamal, Wang, Myeong-Hyeon, Alle, Madhusudhan, and Cho, Dong-Ha
- Subjects
- *
FACE centered cubic structure , *KENAF , *ANTINEOPLASTIC agents , *ZETA potential , *GOLD nanoparticles , *BIOCOMPATIBILITY - Abstract
The combination of green-nanotechnology and biology may contribute to anticancer therapy. In this regard, using gold nanoparticles (GNPs) as therapeutic molecules can be a promising strategy. Herein, we proposed a novel biocompatible nanogold constructed by simply microwave-heating (MWI) Au3+ ions and kenaf seed (KS) extract within a minute. The phytoconstituents of KS extract have been utilized for safe synthesis of gold nanoparticles (KS@GNPs). The biogenic KS@GNPs were characterized by UV-vis Spectra, TEM, HR-TEM, XRD, FTIR, DLS, EDX, and SEAD techniques. The legitimacy and toxicity concern of KS@GNPs were tested against RAW 264.7 and NIH3T3 cell lines. The anticancer efficacy was verified using LN-229 cells. The pathways of KS@GNPs synthesis were optimized by varying the KS concentration (λmax 528 nm), gold salt amount (λmax 524 nm), and MWI times (λmax 522 nm). TEM displayed spherical shape and narrow size distribution (5–19.5 nm) of KS@GNPs, whereas DLS recorded Z-average size of 121.7 d·nm with a zeta potential of −33.7 mV. XRD and SAED ring patterns confirmed the high crystallinity and crystalline face centered cubic structure of gold. FTIR explored OH functional group involved in Au3+ ions reduction followed by GNPs stabilization. KS@GNPs exposure to RAW 264.7 and NIH3T3 cell lines did not induce toxicity while dose-dependent overt cell toxicity and reduced cell viability (26.6%) was observed in LN-229 cells. Moreover, the IC50 (18.79 µg/mL) treatment to cancer cell triggered cellular damages, excessive ROS generation, and apoptosis. Overall, this research exploits a sustainable method of KS@GNPs synthesis and their anticancer therapy. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
10. Network Pharmacology Study to Reveal the Potentiality of a Methanol Extract of Caesalpinia sappan L. Wood against Type-2 Diabetes Mellitus.
- Author
-
Adnan, Md., Jeon, Byeong-Bae, Chowdhury, Md. Helal Uddin, Oh, Ki-Kwang, Das, Tuhin, Chy, Md. Nazim Uddin, and Cho, Dong-Ha
- Subjects
METFORMIN ,TYPE 2 diabetes ,DIABETES ,CAESALPINIA ,PEROXISOME proliferator-activated receptors ,CHEMICAL affinity - Abstract
Caesalpinia sappan L. (CS) is widely used to treat diabetic complications in south-east Asia, specifically in traditional Chinese medicine. This study intends to explain the molecular mechanism of how chemical constituents of CS interrelate with different signaling pathways and receptors involved in T2DM. GC-MS was employed to identify the chemical compounds from the methanol extract of CS wood (MECSW). Lipinski's rule of five was applied, and 33 bioactive constituents have been screened from the CS extract. After that, 124 common targets and 26 compounds associated with T2DM were identified by mining several public databases. Protein–protein interactions and compound-target network were constructed using the STRING database and Cytoscape tool. Protein–protein interactions were identified in 121 interconnected nodes active in T2DM and peroxisome proliferator-activated receptor gamma (PPARG) as key target receptors. Furthermore, pathway compound target (PCT) analysis using the merger algorithm plugin of Cytoscape revealed 121 nodes from common T2DM targets, 33 nodes from MECSW compounds and 9 nodes of the KEGG pathway. Moreover, network topology analysis determined "Fisetin tetramethyl ether" as the key chemical compound. The DAVID online tool determined seven signaling receptors, among which PPARG was found most significant in T2DM progression. Gene ontology and KEGG pathway analysis implied the involvement of nine pathways, and the peroxisome proliferator-activated receptor (PPAR) pathway was selected as the hub signaling pathway. Finally, molecular docking and quantum chemistry analysis confirmed the strong binding affinity and reactive chemical nature of fisetin tetramethyl ether with target receptors exceeding that of the conventional drug (metformin), PPARs agonist (rosiglitazone) and co-crystallized ligands, indicating that fisetin could be a potential drug of choice in T2DM management. This study depicts the interrelationship of the bioactive compounds of MECSW with the T2DM-associated signaling pathways and target receptors. It also proposes a more pharmaceutically effective substance, fisetin tetramethyl ether, over the standard drug that activates PPARG protein in the PPAR signaling pathway of T2DM. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
11. The Promising Mechanisms of Low Molecular Weight Compounds of Panax Ginseng C.A. Meyer in Alleviating COVID-19: A Network Pharmacology Analysis.
- Author
-
Oh, Ki-Kwang, Adnan, Md., and Cho, Dong-Ha
- Subjects
GINSENG ,MOLECULES ,MOLECULAR weights ,COVID-19 ,GINSENOSIDES - Abstract
Panax Ginseng C.A. Meyer (PGCAM) is a well-known phytomedicine, but most of its compounds, such as ginsenoside derivatives, have poor absorption and bioavailability profile due to high molecular weight (≥500 Daltons), which is the major hurdle for their clinical application. Hence, this research explored the efficiency of low molecular weight compounds (LMWCs) (<500 Daltons) screened from PGCAM and their anti-COVID-19 mechanisms through network pharmacology. Molecular compounds from PGCAM were identified using public databases and filtered out by the drug-likeness evaluation. Genes interacted with these filtered compounds, and COVID-19-related genes were extracted from public databases. In addition, overlapping genes between compounds and interactive genes were identified using the Venn diagram. In parallel, the networking between compounds and overlapping genes was analyzed by RStudio. The pathway enrichment analysis of overlapping genes was determined by STRING. Finally, the key bioactive compounds were documented through virtual screening. The bubble chart suggested that the mechanisms of PGCAM against COVID-19 were related to 28 signaling pathways. The key molecular anti-COVID-19 mechanisms might be the anti-inflammation, anti-permeability, and pro-apoptosis by inactivating the PI3K-Akt signaling pathway. The six key genes and the five compounds related to the PI3K-Akt signaling pathway were RELA-paeonol, NFKB1-frutinone A, IL6-nepetin, MCL1-ramalic acid, VEGFA-trifolirhizin, and IL2-trifolirhizin. The docking between these key genes and compounds demonstrated promising binding affinity with a good binding score. Overall, our proposed LMWCs from PGCAM provide a fundamental basis with noteworthy pharmacological evidence to support the therapeutic efficacy of PGCAM in relieving the main symptoms of COVID-19. [ABSTRACT FROM AUTHOR]
- Published
- 2022
- Full Text
- View/download PDF
12. Network Pharmacology-Based Study to Uncover Potential Pharmacological Mechanisms of Korean Thistle (Cirsium japonicum var. maackii (Maxim.) Matsum.) Flower against Cancer.
- Author
-
Oh, Ki-Kwang, Adnan, Md., and Cho, Dong-Ha
- Subjects
- *
CELLULAR signal transduction , *METHYL formate , *ANTINEOPLASTIC agents , *TRADITIONAL medicine , *FLOWERS - Abstract
Cirsium japonicum var. maackii (Maxim.) Matsum. or Korean thistle flower is a herbal plant used to treat tumors in Korean folk remedies, but its essential bioactives and pharmacological mechanisms against cancer have remained unexplored. This study identified the main compounds(s) and mechanism(s) of the C. maackii flower against cancer via network pharmacology. The bioactives from the C. maackii flower were revealed by gas chromatography-mass spectrum (GC-MS), and SwissADME evaluated their physicochemical properties. Next, target(s) associated with the obtained bioactives or cancer-related targets were retrieved by public databases, and the Venn diagram selected the overlapping targets. The networks between overlapping targets and bioactives were visualized, constructed, and analyzed by RPackage. Finally, we implemented a molecular docking test (MDT) to explore key target(s) and compound(s) on AutoDockVina and LigPlot+. GC-MS detected a total of 34 bioactives and all were accepted by Lipinski's rules and therefore classified as drug-like compounds (DLCs). A total of 597 bioactive-related targets and 4245 cancer-related targets were identified from public databases. The final 51 overlapping targets were selected between the bioactive targets network and cancer-related targets. With Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, a total of 20 signaling pathways were manifested, and a hub signaling pathway (PI3K-Akt signaling pathway), a key target (Akt1), and a key compound (Urs-12-en-24-oic acid, 3-oxo, methyl ester) were selected among the 20 signaling pathways via MDT. Overall, Urs-12-en-24-oic acid, 3-oxo, methyl ester from the C. maackii flower has potent anti-cancer efficacy by inactivating Akt1 on the PI3K-Akt signaling pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
13. Network Pharmacology Study on Morus alba L. Leaves: Pivotal Functions of Bioactives on RAS Signaling Pathway and Its Associated Target Proteins against Gout.
- Author
-
Oh, Ki Kwang, Adnan, Md., and Cho, Dong Ha
- Subjects
- *
WHITE mulberry , *GOUT , *SERINE/THREONINE kinases , *PROTEINS , *MOLECULAR docking , *BIOACTIVE compounds - Abstract
M. alba L. is a valuable nutraceutical plant rich in potential bioactive compounds with promising anti-gouty arthritis. Here, we have explored bioactives, signaling pathways, and key proteins underlying the anti-gout activity of M. alba L. leaves for the first-time utilizing network pharmacology. Bioactives in M. alba L. leaves were detected through GC-MS (Gas Chromatography-Mass Spectrum) analysis and filtered by Lipinski's rule. Target proteins connected to the filtered compounds and gout were selected from public databases. The overlapping target proteins between bioactives-interacted target proteins and gout-targeted proteins were identified using a Venn diagram. Bioactives-Proteins interactive networking for gout was analyzed to identify potential ligand-target and visualized the rich factor on the R package via the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on STRING. Finally, a molecular docking test (MDT) between bioactives and target proteins was analyzed via AutoDock Vina. Gene Set Enrichment Analysis (GSEA) demonstrated that mechanisms of M. alba L. leaves against gout were connected to 17 signaling pathways on 26 compounds. AKT1 (AKT Serine/Threonine Kinase 1), γ-Tocopherol, and RAS signaling pathway were selected as a hub target, a key bioactive, and a hub signaling pathway, respectively. Furthermore, three main compounds (γ-Tocopherol, 4-Dehydroxy-N-(4,5-methylenedioxy-2-nitrobenzylidene) tyramine, and Lanosterol acetate) and three key target proteins—AKT1, PRKCA, and PLA2G2A associated with the RAS signaling pathway were noted for their highest affinity on MDT. The identified three key bioactives in M. alba L. leaves might contribute to recovering gouty condition by inactivating the RAS signaling pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
14. Network Pharmacology Study to Interpret Signaling Pathways of Ilex cornuta Leaves against Obesity.
- Author
-
Oh, Ki-Kwang, Adnan, Md., and Cho, Dong-Ha
- Subjects
PROTEIN-protein interactions ,MOLECULAR docking ,OBESITY ,INTERLEUKIN-6 - Abstract
Ilex cornuta Leaves (ICLs) are a representative and traditional prescription for controlling obesity. Nevertheless, the corresponding therapeutic compounds and related pharmacological mechanisms of such medication remain undocumented. The compounds from ICLs were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME confirmed their physicochemical properties. Next, the target proteins related to compounds or obesity-associated proteins were retrieved from public databases. RPackage constructed the protein–protein interaction (PPI) network, a bubble chart, and signaling pathways–target proteins–compounds (STC) network. Lastly, a molecular docking test (MDT) was performed to evaluate the affinity between target proteins and ligands from ICLs. GC-MS detected a total of 51 compounds from ICLs. The public databases identified 219 target proteins associated with selective compounds, 3028 obesity-related target proteins, and 118 overlapping target proteins. Moreover, the STC network revealed 42 target proteins, 22 signaling pathways, and 39 compounds, which were viewed to be remedially significant. The NOD-like receptor (NLR) signaling pathway was considered a key signaling pathway from the bubble chart. In parallel, the MDT identified three target proteins (IL6, MAPK1, and CASP1) on the NLR signaling pathway and four compounds against obesity. Overall, four compounds from ICLs might show anti-obesity synergistic efficacy by inactivating the NLR signaling pathway. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
15. Therapeutic Potentials of Syzygium fruticosum Fruit (Seed) Reflected into an Array of Pharmacological Assays and Prospective Receptors-Mediated Pathways.
- Author
-
Moni, Jannatul Nasma Rupa, Adnan, Md., Tareq, Abu Montakim, Kabir, Md. Imtiazul, Reza, A.S.M. Ali, Nasrin, Mst. Samima, Chowdhury, Kamrul Hasan, Sayem, Syed Al Jawad, Rahman, Md Atiar, Alam, AHM Khurshid, Alam, Seema Binte, Sakib, Mahfuz Ahmed, Oh, Ki Kwang, Cho, Dong Ha, Capasso, Raffaele, and Lamponi, Stefania
- Subjects
SYZYGIUM ,SEEDS ,ETHYL acetate ,FRUIT ,ACETIC acid - Abstract
Syzygium fruticosum (SF), a valuable Bangladeshi fruit, is considered an alternative therapeutic agent. Mainly, seeds are used as nutritional phytotherapy to ease physical and mental status by preventing chronic diseases. Here, we scrutinized the S. fruticosum seed's fundamental importance in traditional medicine by following an integrated approach combining in vivo, in vitro, and in silico studies. The SF was fractionated with different solvents, and the ethyl acetate fraction of SF (EaF-SF) was further studied. Mice treated with EaF-SF (200 and 400 mg/kg) manifested anxiolysis evidenced by higher exploration in elevated plus maze and hole board tests. Similarly, a dose-dependent drop of immobility time in a forced swimming test ensured significant anti-depressant activity. Moreover, higher dose treatment exposed reduced exploratory behaviour resembling decreased movement and prolonged sleeping latency with a quick onset of sleep during the open field and thiopental-induced sleeping tests, respectively. In parallel, EaF-SF significantly (p < 0.001) and dose-dependently suppressed acetic acid and formalin-induced pain in mice. Also, a noteworthy anti-inflammatory activity and a substantial (p < 0.01) clot lysis activity (thrombolytic) was observed. Gas chromatography-mass spectrometry (GC–MS) analysis resulted in 49 bioactive compounds. Among them, 12 bioactive compounds with Lipinski's rule and safety confirmation showed strong binding affinity (molecular docking) against the receptors of each model used. To conclude, the S. fruticosum seed is a prospective source of health-promoting effects that can be an excellent candidate for preventing degenerative diseases. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF
16. Kenaf (Hibiscus cannabinus L.) Leaves and Seed as a Potential Source of the Bioactive Compounds: Effects of Various Extraction Solvents on Biological Properties.
- Author
-
Adnan, Md., Oh, Ki Kwang, Azad, Md Obyedul Kalam, Shin, Myung Hwan, Wang, Myeong-Hyeon, and Cho, Dong Ha
- Subjects
- *
KENAF , *SOLVENT extraction , *BIOACTIVE compounds , *POLAR solvents , *SEEDS , *SUPERCRITICAL fluid extraction - Abstract
Hibiscus cannabinus (Kenaf) is a potential source of bioactive constituents and natural antioxidant. The current study determined the impact of various solvents on extraction yield, recovery of polyphenol and flavonoid, antioxidant, anticancer, and antibacterial properties of Kenaf leaves and seed. The powder of leaves and seed was separately extracted with n-hexane, ethyl acetate, ethanol, and water solvent. Among them, the ethanol extract of leaves and seed showed the highest extraction yield, and their GC-MS analysis revealed a total of 55 and 14 bioactive compounds, respectively. The total polyphenols (TP) and flavonoids (TF) content were quantified by a spectrophotometric technique where water extracts displayed a noteworthy amount of TP and TF content compared to other extracts. A similar demonstration was noticed in antioxidant activity, evaluated by DPPH (2,2-diphenyl-1-picrylhydrazyl) and hydrogen peroxide scavenging capacity. In addition, cytotoxicity and anti-lung cancer activity were identified against mouse embryonic fibroblast (NIH3T3) and human lung cancer (A549) cells. All extracts of leaves and seed were observed as non-toxic to the NIH3T3 cells, but slight toxicity was expressed by n-hexane extracts at the optimum dose (1000 µg/mL) of treatment. In parallel, n-hexane and ethanol extracts (leaves and seed) exposed promising anti-lung cancer activity at the same concentration. Furthermore, antibacterial activity was assessed using disc diffusion assay, and seed extracts exhibited a significant inhibition zone against Gram-positive and Gram-negative microorganisms. Overall, Kenaf seed extracted with polar solvents was found very potent in terms of important bioactive compounds and pharmacological aspects, which can be an excellent biological matrix of natural antioxidants. [ABSTRACT FROM AUTHOR]
- Published
- 2020
- Full Text
- View/download PDF
17. Identification of Gut Microbiome Metabolites via Network Pharmacology Analysis in Treating Alcoholic Liver Disease.
- Author
-
Oh KK, Choi YR, Gupta H, Ganesan R, Sharma SP, Won SM, Jeong JJ, Lee SB, Cha MG, Kwon GH, Kim DJ, and Suk KT
- Abstract
Alcoholic liver disease (ALD) is linked to a broad spectrum of diseases, including diabetes, hypertension, atherosclerosis, and even liver carcinoma. The ALD spectrum includes alcoholic fatty liver disease (AFLD), alcoholic hepatitis, and cirrhosis. Most recently, some reports demonstrated that the pathogenesis of ALD is strongly associated with metabolites of human microbiota. AFLD was the onset of disease among ALDs, the initial cause of which is alcohol consumption. Thus, we analyzed the significant metabolites of microbiota against AFLD via the network pharmacology concept. The metabolites from microbiota were retrieved by the gutMGene database; sequentially, AFLD targets were identified by public databases (DisGeNET, OMIM). The final targets were utilized for protein-protein interaction (PPI) networks and signaling pathway analyses. Then, we performed a molecular docking test (MDT) to verify the affinity between metabolite(s) and target(s) utilizing the Autodock 1.5.6 tool. From a holistic viewpoint, we integrated the relationships of microbiota-signaling pathways-targets-metabolites (MSTM) using the R Package. We identified the uppermost six key targets (TLR4, RELA, IL6, PPARG, COX-2, and CYP1A2) against AFLD. The PPI network analysis revealed that TLR4, RELA, IL6, PPARG, and COX-2 had equivalent degrees of value (4); however, CYP1A2 had no associations with the other targets. The bubble chart showed that the PI3K-Akt signaling pathway in nine signaling pathways might be the most significant mechanism with antagonistic functions in the treatment of AFLD. The MDT confirmed that Icaritin is a promising agent to bind stably to RELA (known as NF-Κb). In parallel, Bacterium MRG-PMF-1, the PI3K-Akt signaling pathway, RELA, and Icaritin were the most significant components against AFLD in MSTM networks. In conclusion, we showed that the Icaritin-RELA complex on the PI3K-Akt signaling pathway by bacterial MRG-PMF-1 might have promising therapeutic effects against AFLD, providing crucial evidence for further research.
- Published
- 2022
- Full Text
- View/download PDF
18. New Insight into Drugs to Alleviate Atopic March via Network Pharmacology-Based Analysis.
- Author
-
Oh KK, Adnan M, and Cho DH
- Abstract
In the present study, a subject of atopic dermatitis (AD) is exposed progressively to allergic rhinitis (AR) and asthma (AS), which is defined as atopic march (AM). However, both the targets and compounds against AM are still largely unknown. Hence, we investigated the overlapping targets related directly to the occurrence and development of AD, AR, and AS through public databases (DisGeNET, and OMIM). The final overlapping targets were considered as key targets of AM, which were visualized by a Venn diagram. The protein-protein interaction (PPI) network was constructed using R package software. We retrieved the association between targets and ligands via scientific journals, and the ligands were filtered by physicochemical properties. Lastly, we performed a molecular docking test (MDT) to identify the significant ligand on each target. A total of 229 overlapping targets were considered as AM causal elements, and 210 out of them were interconnected with each other. We adopted 65 targets representing the top 30% highest in degree centrality among 210 targets. Then, we obtained 20 targets representing the top 30% greatest in betweenness centrality among 65 targets. The network analysis unveiled key targets against AM, and the MDT confirmed the affinity between significant compounds and targets. In this study, we described the significance of the eight uppermost targets (CCL2, CTLA4, CXCL8, ICAM1, IL10, IL17A, IL1B, and IL2) and eight ligands (Bindarit, CTLA-4 inhibitor, Danirixin, A-205804, AX-24 HCl, Y-320, T-5224, and Apilimod) against AM, providing a scientific basis for further experiments.
- Published
- 2022
- Full Text
- View/download PDF
19. Revealing Potential Bioactive Compounds and Mechanisms of Lithospermum erythrorhizon against COVID-19 via Network Pharmacology Study.
- Author
-
Oh KK and Adnan M
- Abstract
Lithospermum erythrorhizon (LE) is known in Korean traditional medicine for its potent therapeutic effect and antiviral activity. Currently, coronavirus (COVID-19) disease is a developing global pandemic that can cause pneumonia. A precise study of the infection and molecular pathway of COVID-19 is therefore obviously important. The compounds of LE were identified from the Natural Product Activity and Species Source (NPASS) database and screened by SwissADME. The targets interacted with the compounds and were selected using the Similarity Ensemble Approach (SEA) and Swiss Target Prediction (STP) methods. PubChem was used to classify targets linked to COVID-19. The protein-protein interaction (PPI) networks and signaling pathways-targets-bioactive compounds (STB) networks were constructed by RPackage. Lastly, we performed the molecular docking test (MDT) to verify the binding affinity between significant complexes through AutoDock 1.5.6. The Natural Product Activity and Species Source (NPASS) revealed a total of 82 compounds from LE, which interacted with 1262 targets (SEA and STP), and 249 overlapping targets were identified. The 19 final overlapping targets from the 249 targets and 356 COVID-19 targets were ultimately selected. A bubble chart exhibited that inhibition of the MAPK signaling pathway could be a key mechanism of LE on COVID-19. The three key targets (RELA, TNF, and VEGFA) directly related to the MAPK signaling pathway, and methyl 4-prenyloxycinnamate, tormentic acid, and eugenol were related to each target and had the most stable binding affinity. The three bioactive effects on the three key targets might be synergistic effects to alleviate symptoms of COVID-19 infection. Overall, this study shows that LE can play a role in alleviating COVID-19 symptoms, revealing that the three components (bioactive compounds, targets, and mechanism) are the most significant elements of LE against COVID-19. However, the promising mechanism of LE on COVID-19 is only predicted on the basis of mining data; the efficacy of the chemical compounds and the affinity between compounds and the targets in experiment was ignored, which should be further substantiated through clinical trials.
- Published
- 2022
- Full Text
- View/download PDF
20. Network Pharmacology Study to Elucidate the Key Targets of Underlying Antihistamines against COVID-19.
- Author
-
Oh KK, Adnan M, and Cho DH
- Abstract
Antihistamines have potent efficacy to alleviate COVID-19 (Coronavirus disease 2019) symptoms such as anti-inflammation and as a pain reliever. However, the pharmacological mechanism(s), key target(s), and drug(s) are not documented well against COVID-19. Thus, we investigated to decipher the most significant components and how its research methodology was utilized by network pharmacology. The list of 32 common antihistamines on the market were retrieved via drug browsing databases. The targets associated with the selected antihistamines and the targets that responded to COVID-19 infection were identified by the Similarity Ensemble Approach (SEA), SwissTargetPrediction (STP), and PubChem, respectively. We described bubble charts, the Pathways-Targets-Antihistamines (PTA) network, and the protein-protein interaction (PPI) network on the RPackage via STRING database. Furthermore, we utilized the AutoDock Tools software to perform molecular docking tests (MDT) on the key targets and drugs to evaluate the network pharmacological perspective. The final 15 targets were identified as core targets, indicating that Neuroactive ligand-receptor interaction might be the hub-signaling pathway of antihistamines on COVID-19 via bubble chart. The PTA network was constructed by the RPackage, which identified 7 pathways, 11 targets, and 30 drugs. In addition, GRIN2B, a key target, was identified via topological analysis of the PPI network. Finally, we observed that the GRIN2B-Loratidine complex was the most stable docking score with -7.3 kcal/mol through molecular docking test. Our results showed that Loratadine might exert as an antagonist on GRIN2B via the neuroactive ligand-receptor interaction pathway. To sum up, we elucidated the most potential antihistamine, a key target, and a key pharmacological pathway as alleviating components against COVID-19, supporting scientific evidence for further research.
- Published
- 2022
- Full Text
- View/download PDF
21. Drug Investigation to Dampen the Comorbidity of Rheumatoid Arthritis and Osteoporosis via Molecular Docking Test.
- Author
-
Oh KK, Adnan M, and Cho DH
- Abstract
At present, most rheumatoid arthritis (RA) patients are at risk of osteoporosis (OP), which is increased by 1.5 times compared to non-RA individuals. Hence, we investigated overlapping targets related directly to the occurrence and development of RA and OP through public databases (DisGeNET, and OMIM) and literature. A total of 678 overlapping targets were considered as comorbid factors, and 604 out of 678 were correlated with one another. Interleukin 6 (IL-6), with the highest degree of value in terms of protein−protein interaction (PPI), was considered to be a core target against comorbidity. We identified 31 existing small molecules (< 1000 g/mol) as IL-6 inhibitors, and 19 ligands were selected by the 3 primary criteria (Lipinski’s rule, TPSA, and binding energy). We postulated that MD2-TLR4-IN-1 (PubChem ID: 138454798), as confirmed by the three criteria, was the key ligand to alleviate comorbidity between RA and OP. In conclusion, we described a promising active ligand (MD2-TLR4-IN-1), and a potential target (IL-6) against comorbidity of RA and OP, providing scientific evidence for a further clinical trial.
- Published
- 2022
- Full Text
- View/download PDF
22. Elucidating Drug-Like Compounds and Potential Mechanisms of Corn Silk ( Stigma Maydis ) against Obesity: A Network Pharmacology Study.
- Author
-
Oh KK, Adnan M, and Cho DH
- Subjects
- Chemical Phenomena, Drug Discovery, Gas Chromatography-Mass Spectrometry, Humans, Medicine, Traditional, Models, Molecular, Molecular Structure, Obesity drug therapy, Structure-Activity Relationship, Plant Extracts chemistry, Plant Extracts pharmacology, Zea mays chemistry
- Abstract
Corn silk ( Stigma Maydis ) has been utilized as an important herb against obesity by Chinese, Korean, and Native Americans, but its phytochemicals and mechanisms(s) against obesity have not been deciphered completely. This study aimed to identify promising bioactive constituents and mechanism of action(s) of corn silk (CS) against obesity via network pharmacology. The compounds from CS were identified using Gas Chromatography Mass Spectrometry (GC-MS) and were confirmed ultimately by Lipinski's rule via SwissADME. The relationships of the compound-targets or obesity-related targets were confirmed by public bioinformatics. The signaling pathways related to obesity, protein-protein interaction (PPI), and signaling pathways-targets-bioactives (STB) were constructed, visualized, and analyzed by RPackage. Lastly, Molecular Docking Test (MDT) was performed to validate affinity between ligand(s) and protein(s) on key signaling pathway(s). We identified a total of 36 compounds from CS via GC-MS, all accepted by Lipinski's rule. The number of 36 compounds linked to 154 targets, 85 among 154 targets related directly to obesity-targets (3028 targets). Of the final 85 targets, we showed that the PPI network (79 edges, 357 edges), 12 signaling pathways on a bubble chart, and STB network (67 edges, 239 edges) are considered as therapeutic components. The MDT confirmed that two key activators (β-Amyrone, β-Stigmasterol) bound most stably to PPARA, PPARD, PPARG, FABP3, FABP4, and NR1H3 on the PPAR signaling pathway, also, three key inhibitors (Neotocopherol, Xanthosine, and β-Amyrone) bound most tightly to AKT1, IL6, FGF2, and PHLPP1 on the PI3K-Akt signaling pathway. Overall, we provided promising key signaling pathways, targets, and bioactives of CS against obesity, suggesting crucial pharmacological evidence for further clinical testing.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.