1. Developing an Assisting Device to Reduce the Vibration on the Hands of Elders.
- Author
-
Phan Van, Hieu and Ngo, Ha Quang Thinh
- Subjects
MEDICAL care ,OLDER people ,PARKINSON'S disease ,CONTINUOUS time models ,MEDICAL assistance ,WEARABLE technology - Abstract
In our society, elderly people are one of the most vulnerable classes. At present, aging in the population is becoming a more and more serious issue. This might lead to several diseases related to aging such as Parkinson's disease. From the viewpoint of assistive techniques, a device for disadvantaged groups should be created to lessen some of the inconveniences in their lives. Therefore, in this paper, a wearable mechanism to suppress axial vibration is proposed for people who suffer from unexpected tremors in their daily lives. Some investigations on Parkinson's patients were carried out to infer their characteristics. A dynamic model of the gyroscopic system was then analyzed to formulate interactive torques in the working space. The control input was quantified concerning balancing the system state from the kinetic energy and using the feedback linearization technique. The framework of the proposed device was then described via mechanical analysis and prototype design. To validate the effectiveness of our approach, the system's mathematical dynamics were simulated in a MATLAB environment. In a frequency range of 2–6 Hz, the system response adapted well to axial tremors. Our hardware in the proposed design was tested in different test scenarios such as in non-gyro- and gyro-based tremor suppression for real-world applications. Hand tremors were measured using wearable equipment with various levels of amplitude. From these results, it is clear that our method could have an effectiveness of up to 92.6%, which is considerably better than that in the non-gyro case. Hence, this innovative mechanism is expected to be employed in the fields of medical assistance, health care services, and robotics. [ABSTRACT FROM AUTHOR]
- Published
- 2021
- Full Text
- View/download PDF