1. Evolution of Theories on Doxorubicin-Induced Late Cardiotoxicity-Role of Topoisomerase.
- Author
-
Szponar, Jaroslaw, Ciechanski, Erwin, Ciechanska, Magda, Dudka, Jaroslaw, and Mandziuk, Sławomir
- Abstract
Doxorubicin (DOX) has been widely used as a cytotoxic chemotherapeutic. However, DOX has a number of side effects, such as myelotoxicity or gonadotoxicity, the most dangerous of which is cardiotoxicity. Cardiotoxicity can manifest as cardiac arrhythmias, myocarditis, and pericarditis; life-threatening late cardiotoxicity can result in heart failure months or years after the completion of chemotherapy. The development of late cardiomyopathy is not yet fully understood. The most important question is how DOX reprograms the cardiomyocyte, after which DOX is excreted from the body, initially without symptoms. However, clinically overt cardiomyopathy develops over the following months and years. Since the 1980s, DOX-induced disorders in cardiomyocytes have been thought to be related to oxidative stress and dependent on the Fe/reactive oxygen species (ROS) mechanism. That line of evidence was supported by dexrazoxane (DEX) protection, the only Food and Drug Administration (FDA)-approved drug for preventing DOX-induced cardiomyopathy, which complexes iron. Thus, the hypothesis related to Fe/ROS provides a plausible explanation for the induction of the development of late cardiomyopathy via DOX. However, in subsequent studies, DEX was used to identify another important mechanism in DOX-induced cardiomyopathy that is related to topoisomerase 2β (Top2β). Does the Top2β hypothesis explain the mechanisms of the development of DOX-dependent late heart failure? Several of these mechanisms have been identified to date, proving the involvement of Top2β in the regulation of the redox balance, including oxidative stress. Thus, the development of late cardiomyopathy can be explained based on mechanisms related to Top2β. In this review, we highlight free radical theory, iron imbalance, calcium overload, and finally, a theory based on Top2β. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF