1. Volume-Mediated Lake-Ice Phenology in Southwest Alaska Revealed through Remote Sensing and Survival Analysis.
- Author
-
Kirchner, Peter B. and Hannam, Michael P.
- Subjects
OPTICAL remote sensing ,ICE on rivers, lakes, etc. ,SOLAR temperature ,SURVIVAL analysis (Biometry) ,REMOTE sensing - Abstract
Lakes in Southwest Alaska are a critical habitat to many species and provide livelihoods to many communities through subsistence fishing, transportation, and recreation. Consistent and reliable data are rarely available for even the largest lakes in this sparsely populated region, so data-intensive methods utilizing long-term observations and physical data are not possible. To address this, we used optical remote sensing (MODIS 2002–2016) to establish a phenology record for key lakes in the region, and we modeled lake-ice formation and breakup for the years 1982–2022 using readily available temperature and solar radiation-based predictors in a survival modeling framework that accounted for years when lakes did not freeze. Results were validated with observations recorded at two lakes, and stratification measured by temperature arrays in three others. Our model provided good predictions (mean absolute error, freeze-over = 11 days, breakup = 16 days). Cumulative freeze-degree days and cumulative thaw-degree days were the strongest predictors of freeze-over and breakup, respectively. Lake volume appeared to mediate lake-ice phenology, as ice-cover duration tended to be longer and less variable in lower-volume lakes. Furthermore, most lakes < 10 km
3 showed a trend toward shorter ice seasons of −1 to −6 days/decade, while most higher-volume lakes showed undiscernible or positive trends of up to 2 days/decade. Lakes > 20 km3 also showed a greater number of years when freeze-over was neither predicted by our model (37 times, n = 200) nor observed in the MODIS record (19 times, n = 60). While three lakes in our study did not commonly freeze throughout our study period, four additional high-volume lakes began experiencing years in which they did not freeze, starting in the late 1990s. Our study provides a novel approach to lake-ice prediction and an insight into the future of lake ice in the Boreal region. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF