1. The Phenolic Compounds Profile and Cosmeceutical Significance of Two Kazakh Species of Onions: Allium galanthum and A. turkestanicum
- Author
-
Marcelina Strzępek-Gomółka, Agnieszka Grzegorczyk, Kazimierz Głowniak, Justyna Zagórska, Karolina Czech, Manoj Kumar, Wirginia Kukula-Koch, Katarzyna Gaweł-Bęben, Wojciech Koch, Agnieszka Ludwiczuk, Anna Malm, Gulnara Kadyrbayeva, and Zuriyadda Sakipova
- Subjects
Spectrometry, Mass, Electrospray Ionization ,tyrosinase inhibition ,DPPH ,Pharmaceutical Science ,Organic chemistry ,Ether ,Candida parapsilosis ,Article ,antimicrobials ,Antioxidants ,Gas Chromatography-Mass Spectrometry ,Analytical Chemistry ,Allium ,chemistry.chemical_compound ,QD241-441 ,Anti-Infective Agents ,Phenols ,Candida krusei ,Drug Discovery ,Onions ,Food science ,Physical and Theoretical Chemistry ,Enzyme Inhibitors ,HPLC-QTOF-MS/MS ,polyphenols ,ABTS ,biology ,Candida glabrata ,Monophenol Monooxygenase ,Plant Extracts ,Amaryllidaceae ,food and beverages ,biology.organism_classification ,Kazakhstan ,chemistry ,Chemistry (miscellaneous) ,Molecular Medicine ,Trolox ,Diethyl ether ,GC-MS - Abstract
Numerous species of Allium genus have been used in the traditional medicine based on their vast biological effects, e.g., antimicrobial, digestion stimulant, anti-sclerotic, soothing, antiradical or wound healing properties. In this work, unpolar and polar extracts from two lesser-investigated species of Allium growing in Kazakhstan, Allium galanthum Kar. &, Kir. (AG) and A. turkestanicum Regel. (AT), were studied for their composition and biological effects. In the HPLC-ESI-QTOF-MS/MS analyses of water and alcoholic extracts simple organic acids, flavonoids and their glycosides were found to be the best represented group of secondary metabolites. On the other hand, in the GC-MS analysis diethyl ether, extracts were found to be rich sources of straight-chain hydrocarbons and their alcohols, fatty acids and sterols. The antimicrobial activity assessment showed a lower activity of polar extracts, however, the diethyl ether extract from AT bulbs and AG chives showed the strongest activity against Bacillus subtilis ATCC 6633, B. cereus ATCC 10876, some species of Staphylococcus (S. aureus ATCC 25923 and S. epidermidis ATCC 12228) and all tested Candida species (Candida albicans ATCC 2091, Candida albicans ATCC 10231, Candida glabrata ATCC 90030, Candida krusei ATCC 14243 and Candida parapsilosis ATCC 22019) with a minimum inhibitory concentration of 0.125–0.5 mg/mL. The highest antiradical capacity exhibited diethyl ether extracts from AG bulbs (IC50 = 19274.78 ± 92.11 mg Trolox eq/g of dried extract) in DPPH assay. In ABTS scavenging assay, the highest value of mg Trolox equivalents, 50.85 ± 2.90 was calculated for diethyl ether extract from AT bulbs. The same extract showed the highest inhibition of mushroom tyrosinase (82.65 ± 1.28% of enzyme activity), whereas AG bulb ether extract was the most efficient murine tyrosinase inhibitor (54% of the enzyme activity). The performed tests confirm possible cosmeceutical applications of these plants.
- Published
- 2021